3H), 2.30 (br, 3H), 2.01 (s, 6H), 1.19 (t, 3H, J = 7.1 Hz); 13C NMR (d8-
THF) d 218.2, 138.4, 136.0, 129.5, 128.9, 121.1, 118.3, 59.8, 21.5, 21.1,
17.7, 15.2. 7b: 1H NMR (d8-THF) d 7.11 (d, 1H, J = 1.6 Hz), 6.91 (s, 2H),
6.85 (d, 1H, J = 1.6 Hz), 4.11 (t, 2H, J = 6.9 Hz), 2.35 (t, 2H, J = 6.9 Hz),
2.29 (s, 3H), 1.98 (s, 6H), 1.95–1.80 (m, 2H), 1.75–1.40 (m, 4H).
‡ Crystal data. 3: C17H22N2, M = 254.37 g mol21, colorless, crystal
dimensions 0.26 3 0.22 3 0.11 mm, monoclinic P21/n (no. 14), at 100 K a
= 9.5288(4), b = 29.1967(15), c = 11.0965(6) Å , b = 94.419(2)°, V =
3078.0(3) Å3, Z = 8, r = 1.098 Mg m23, m = 0.065 mm21, l = 0.71073
Å, 10536 reflections measured, 3885 unique (Rint = 0.148), final R =
0.078, wR(F2) = 0.209, CCDC 168097. 8: C42H61Cl2N2O2PRu, M =
828.87 g mol21, red–brown, crystal dimensions 0.18 3 0.12 3 0.02 mm,
monoclinic P21/c (no. 14), at 100 K a = 17.4060(2), b = 10.2810(1), c =
23.6677(3) Å, b = 96.673(1)°, V = 4206.67(8) Å3, Z = 4, r = 1.309 Mg
m23, m = 0.573 mm21, l = 0.71073 Å, 44732 reflections measured, 15979
unique (Rint = 0.075) final R = 0.049, wR(F2) = 0.113. CCDC 168098.
in CIF or other electronic format.
§ Data for ruthenium complexes. 8: 1H NMR (CD2Cl2) d 19.16 (s, 1H), 7.82
(br, 2H), 7.53 (m, 1H), 7.42 (m, 1H), 7.12 (t, 2H, J = 7.6 Hz), 6.87 (d, 1H,
J = 2.1 Hz), 6.30 (m, 2H), 5.96 (q, 1H, J = 7.4 Hz), 4.40–4.20 (m, 2H),
2.40–2.20 (m, 3H), 2.34 (s, 3H), 2.00–1.50 (m, 15H), 1.99 (d, 3H, J = 7.3
Hz), 1.93 (s, 6H), 1.45–1.00 (m, 15H), 1.33 (t, 3H, J = 7.2 Hz); 31P NMR
(CD2Cl2) d 35.6; C42H61Cl2N2O2PRu (915.86) calcd. C, 60.86; H, 7.42; N,
3.38; found C, 60.75; H, 7.38; N, 3.32%; 9: 1H NMR (C6D6) d 19.75 (s, 1H),
8.17 (br, 2H), 7.60–6.80 (m, 5H), 6.20 (s, 1H), 6.17 (d, 1H, J = 1.8 Hz),
4.54 (t, 2H, J = 7.2 Hz), 3.26 (m, 2H), 2.70–2.50 (m, 3H), 2.30–1.10 (m,
36H), 2.18 (s, 3H), 1.83 (s, 6H); 31P NMR (C6D6) d 34.2; C43H62Cl2N3PRu
(823.93) calcd. C, 62.68; H, 7.58; N, 5.10; found C, 62.70; H 7.49; N,
4.97%.
Fig. 2 Molecular structure of complex 8.‡ Anisotropic displacement
parameters are shown at 50% probability level. Selected bond lengths [Å]
and angles [°]: Ru1–C9 1.839(2), Ru1–C1 2.066(2), Ru1–Cl2 2.3944(5),
Ru1–Cl1 2.4056(5), Ru1–P1 2.4156(6), Cl2–Ru1–Cl1 162.299(19), C1–
Ru1–P1 162.02(6).
Table 1 Ring closing metathesis reactions (RCM) using complex 8 as the
catalyst; E = COOEta
Substrate
Product
Yield
91%
1 Review: D. Bourissou, O. Guerret, F. P. Gabbai and G. Bertrand, Chem.
Rev., 2000, 100, 39.
2 A. J. Arduengo, Acc. Chem. Res., 1999, 32, 913.
3 W. A. Herrmann and C. Köcher, Angew. Chem., Int. Ed. Engl., 1997, 36,
2162; D. Enders and H. Gielen, J. Organomet. Chem., 2001, 617–618,
70.
4 Reviews: T. M. Trnka and R. H. Grubbs, Acc. Chem. Res., 2001, 34, 18;
A. Fürstner, Angew. Chem., Int. Ed., 2000, 39, 3012.
69%
5 C. Zhang, J. Huang, M. L. Trudell and S. P. Nolan, J. Org. Chem., 1999,
64, 3804; A. Fürstner and A. Leitner, Synlett, 2001, 290; S. Lee and J. F.
Hartwig, J. Org. Chem., 2001, 66, 3402; G. A. Grasa and S. P. Nolan,
Org. Lett., 2001, 3, 119; W. A. Herrmann, M. Elison, J. Fischer, C.
Köcher and G. R. J. Artus, Angew. Chem., Int. Ed., 1995, 34, 2371; J.
Huang and S. P. Nolan, J. Am. Chem. Soc., 1999, 121, 9889 and
literature cited therein.
78%b
6 See also: A. Fürstner and H. Krause, Adv. Synth. Catal., 2001, 343, 343;
H. M. Lee, T. Jiang, E. D. Stevens and S. P. Nolan, Organometallics,
2001, 20, 1255; A. C. Chen, L. Ren, A. Decken and C. M. Crudden,
Organometallics, 2000, 19, 3459; J. Louie and R. H. Grubbs, Chem.
Commun., 2000, 1479.
a All reactions were performed in toluene at 80 °C using 4–7 mol% of 8. b In
CH2Cl2 at 40 °C.
7 A. Fürstner, L. Ackermann, B. Gabor, R. Goddard, C. W. Lehmann, R.
Mynott, F. Stelzer and O. R. Thiel, Chem. Eur. J, 2001, 7, 3236.
8 P. Schwab, R. H. Grubbs and J. W. Ziller, J. Am. Chem. Soc., 1996, 118,
100.
conserved structural motif in unsymmetrical NHC-complexes
of this type.7 Moreover, the preliminary data displayed in Table
1 illustrate that complex 8 exhibits promising catalytic activity
in prototype metathesis reactions.
We are grateful to the DFG (Leibniz award to A. F.) and the
Fonds der Chemischen Industrie for generous financial sup-
port.
9 W. Kirmse, Carbene Chemistry, Academic Press, New York, 1971.
10 NHC’s rapidly react with electron deficient alkenes, cf. D. Enders, K.
Breuer, J. Runsink and J. H. Teles, Liebigs Ann., 1996, 2019.
11 For a NHC’s with adjacent alkyne groups prepared by a different
method see: R. Faust and B. Göbelt, Chem. Commun., 2000, 919.
12 A. J. Arduengo, R. Krafczyk, R. Schmutzler, H. A. Craig, J. R. Goerlich,
W. J. Marshall and M. Unverzagt, Tetrahedron, 1999, 55, 14 523.
13 A. J. Arduengo, J. C. Calabrese, F. Davidson, H. V. Rasika Dias, J. R.
Goerlich, R. Karfczyk, W. J. Warshall, M. Tamm and R. Schmutzler,
Helv. Chim. Acta, 1999, 82, 2348.
14 Note, however, that carbonyl-containing NHC’s have previously been
invoked as transient species in the preparation of metal complexes, cf.
D. S. McGuinness and K. J. Cavell, Organometallics, 2000, 19, 741; H.
Glas, E. Herdtweck, M. Spiegler, A.-K. Pleier and W. R. Thiel,
J. Organomet. Chem., 2001, 626, 100.
Notes and references
† Data for functionalized carbenes. 3: 1H NMR (d8-THF) d 7.09 (d, 1H, J
= 1.5 Hz), 6.90 (s, 2H), 6.83 (d, 1H, J = 1.5 Hz), 5.84 (ddt, 1H, J = 17.0,
10.3, 6.6 Hz), 5.03 (ddt, 1H, J = 17.1, 1.9, 1.6 Hz), 4.94 (ddt, 1H, J = 10.1,
2.1, 1.2 Hz), 4.08 (t, 2H, J = 6.9 Hz), 2.29 (s, 3H), 2.09 (m, 2H), 1.97 (s,
6H), 1.92 (m, 2H); 13C NMR (d8-THF) d 217.1, 139.9, 138.9, 137.5, 135.8,
1
129.5, 121.1, 119.4, 115.2, 50.8, 31.8, 31.6, 21.0, 18.0. 7a: H NMR (d8-
THF) d 7.25–7.00 (m, 3H), 6.95 (m, 2H), 4.08 (q, 2H, J = 7.1 Hz), 2.30 (s,
Chem. Commun., 2001, 2240–2241
2241