Page 3 of 4
Journal Name
ChemComm
DOI: 10.1039/C6CC01863G
o
mixture was stirred stirred for 4.75 h, 110 C, in argon. a Starting from
b
1ꢀ(4ꢀmethoxyphenyl)ꢀ2ꢀphenylethanone.
methoxyphenyl)ꢀ1ꢀphenylethanone.
Starting from 2ꢀ(4ꢀ
b Department of Chemistry, Jinan University, Huangpu Road West 601,
Guangzhou 510632(China); Eꢀmail: tchjli@jnu.edu.cn
Electronic Supplementary Information (ESI) available: See
DOI: 10.1039/c000000x/
To gain insights into the reaction mechanism, several
possible intermediates derived from ꢀmethylbenzaldehyde 2a
were investigated in reactions with 1,2ꢀdiphenylethanone 1a
under the same reaction conditions (Scheme 3). First, 4ꢀ
methylbenzonitrile 4a, a potential intermediate from Schmidt
reaction of 2a in the presence of Me3SiN3 and acid, was tested.
p
1
(a) R. Hili, A. K. Yudin, Nat. Chem. Biol. 2006, 2, 284; (b) Amino
However, only 1,2ꢀdiketone 5a, an oxidation product of 1a
,
was detected together with unconsumed 1a and 4a. Similar
phenomena were observed with 4ꢀmethylbenzamide 4b, 4ꢀ
methylbenzoic acid 4c, or 4ꢀmethylbenzoyl azide 4d as
reactants in place of aldehyde 2a, ruling out the possibility of
their being reaction intermediates (Scheme 3). Reaction of
1,2ꢀdiketone 5a with aldehyde 2a failed to lead to the
formation of 3a. When 2ꢀazidoꢀ1,2ꢀdiphenylethanꢀ1ꢀone 5b
was subjected to the standard reaction with 2a, the expected
imidazole 3a was isolated in 74% yield. It is known that
copper salt can promote the transformation of ketone or
aldehyde to its imine derivative in the presence of azide.19
Therefore, azidation of the methylene group in 1,2ꢀ
diphenylethanone or its imine intermediate is proposed as the
key step in the current imidazole synthesis. However, direct
amination of the methylene group, similar to our recent report
Group Chemistry: From Synthesis to the Life Sciences (Ed., A.
Ricci,), WileyꢀVCH, Weinheim, Germany, 2007; (c) P. A. Gale,
Acc. Chem. Res. 2006, 39, 465.
2
(a) S. H. Cho, J. Y. Kim, J. Kwak, S. Chang, Chem. Soc. Rev. 2011,
40, 5068; (b) T. R. M. Rauws, B. U. W. Maes, Chem. Soc. Rev.
2012, 41, 2463; (c) Z. Shi, C. Zhang, C. Tang, N. Jiao, Chem. Soc.
Rev. 2012, 41, 3381; (d) C. Zhang, C. Tang, N. Jiao, Chem. Soc.
Rev. 2012, 41, 3464; (e) G. Song, F. Wang, X. Li, Chem. Soc. Rev.
2012, 41, 3651; (f) J. Bariwal, E. Van der Eycken, Chem. Soc. Rev.
2013, 42, 9283; (g) M. L. Louillat, F. W. Patureau, Chem. Soc. Rev.
2014, 43, 901.
3
(a) J. Y. Kim, S. H. Park, J. Ryu, S. H. Cho, S. H. Kim, S. Chang, J.
Am. Chem. Soc. 2012, 134, 9110; (b) J. Ryu, K. Shin, S. H. Park, J.
Y. Kim, S. Chang, Angew. Chem., Int. Ed. 2012, 51, 9904; (c) K.
Shin, Y. Baek, S. Chang, Angew. Chem., Int. Ed. 2013, 52, 8031;
on the synthesis of imidazo[1,5ꢀa]pyridine through benzylic
C(sp3)ꢀH bond amination,14 cannot be ruled out. To confirm
that C(sp3)−H azidation product 5b was a plausible reaction
intermediate, density functional theory (DFT) calculations
were conducted.20
(d) J. Jeong, P. Patel, H. Hwang, S. Chang, Org. Lett. 2014, 16
,
4598; (f) H. Hwang, J. Kim, J. Jeong, S. Chang, J. Am. Chem. Soc.
2014, 136, 10770.
4
(a) J. Kim, J. Kim, S. Chang, Chem. Eur. J. 2013, 19, 7328; (b) V.
S. Thirunavukkarasu, K. Raghuvanshi, L. Ackermann, Org. Lett.
2013, 15, 3286; (c) M. Bhanuchandra, M. R. Yadav, R. K. Rit, M.
R. Kuram, A. K. Sahoo, Chem. Commun. 2013, 49, 5225; (d) M. R.
Yadav, R. K. Rit, A. K. Sahoo, Org. Lett. 2013, 15, 1638; (e) Q. Z.
Zheng, Y. F. Liang, C. Qin, N. Jiao, Chem. Commun. 2013, 49
5654; (f) K. Shin, J. Ryu, S. Chang, Org. Lett. 2014, 16, 2022; (g)
E. Brachet, T. Ghosh, I. Ghosh, B. Konig, Chem. Sci. 2015, , 987.
,
6
Scheme 3. Investigation of possible reaction intermediates.
5
6
(a) J. Ryu, J. Kwak, K. Shin, D. Lee, S. Chang, J. Am. Chem. Soc.
2013, 135, 12861; (b) J. Kim, S. Chang, Angew. Chem., Int. Ed.
2014, 53, 2203; (c) T. Kang, Y. Kim, D. Kee, Z. Wang, S. Chang, J.
Am. Chem. Soc. 2014, 136, 4141; (d) K. Shin, S. Chang, J. Org.
Chem. 2014, 79, 12197; (e) H. Kim, J. Park, J. G. Kim, S. Chang,
Org. Lett. 2014, 16, 5466.
In conclusion, we developed an efficient method for the
synthesis of triꢀsubstituted imidazoles starting from simple
acetaphenone derivatives and aldehydes, which are readily
available. In this process, two nitrogen atoms derived from
Me3SiN3 were formally inserted to the target molecule by 4 Cꢀ
N bonds formation. Azidation of the sp3 hybridized CꢀH bond
is the key step for this multiple CꢀN bondꢀforming sequence,
suggested by experimental results and DFT calculations.
(a) B. Sun, T. Yoshino, S. Matsunaga, M. Kanai, Adv. Synth. Catal.
2014, 356, 1491; (b) B. Sun. T. Yoshino, S. Matsunaga, M. Kanai,
Chem. Commun. 2015, 51, 4649.
7
8
Z. Hu, S. Luo, Q. Zhu, Sci. Chin. Chem. 2015, 58, 1349.
(a) J. Peng, M. Chen, Z. Xie, S. Luo, Q. Zhu, Org. Chem. Front.
Acknowledgement
We are grateful for the financial support of the National Science
Foundation of China (21272233, 21472190, 21573095), the
Fundamental Research Funds for the Central Universities (Grant
No. 21615405) and the highꢀperformance computing platform of
Jinan University.
2014, 1, 777; (b) J. Peng, Z. Xie, S. Luo, Q. Zhu, Org. Lett. 2014,
16, 4702; (c) R. R. Donthiri, V. Pappula, N. N. K. Reddy, D.
Bairagi, S. Adimurthy, J. Org. Chem. 2014, 79, 11277; (d) Y. M.
Badiei, A. Dinescu, X. Dai, R. M. Palomino, F. W. Heinemann, T.
R. Cundari, T. Warren, Angew. Chem., Int. Ed. 2008, 47, 9961.
(a) S. Cenini, E. Gallo, A. Caselli, F. Ragaini, S. Fantauzi, C.
Piangiolino, Coord. Chem. Rev. 2006, 250, 1234; (b) S. Brase, C.
Notes and references
9
‡
These authors contributed equally to this work.
a State Key Laboratory of Respiratory Disease, Guangzhou Institutes of
Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan
Avenue, Guangzhou 510530 (China), Fax: (+86) 20ꢀ3201ꢀ5299.
Eꢀmail: zhu_qiang@gibh.ac.cn
Gil, K. Knepper, V. Zimmerman, Angew. Chem., Int. Ed. 2005, 44
,
5188; (c) S. Lang, J. A. Murphy, Chem. Soc. Rev. 2006, 35, 146; (d)
K. Shin, H. Kim, S. Chang, Acc. Chem. Res. 2015, 48, 1040.
This journal is © The Royal Society of Chemistry 2012
J. Name., 2012, 00, 1-3 | 3