340
S. I. Hauck et al. / Bioorg. Med. Chem. Lett. 17 (2007) 337–340
In conclusion, we report the synthesis13 and biological
evaluation of a new class of oxazolidinones. The
3-methylisoxazole-phenyl oxazolidinones have excel-
lent Gram-positive activity and DMPK properties. In
particular, compound 17 shows exceptional efficacy
against S. pneumoniae infections. Replacement of the
typical acetamide group by 4-methyl triazole showed
diminished MAO-A inhibition in our series. Addition-
al work exploring the substitution of the isoxazole
ring is ongoing in order to improve the Gram-negative
activity.
References and notes
1. Gregory, W. A. U.S. Patent 4,461,773, 1984.
2. Lin, A. H.; Murray, R. W.; Vidmar, T. J.; Marotti, K. R.
Antimicrob. Agents Chemother. 1997, 41, 2127.
3. Harwood, P. J.; Giannoudis, P. V. Expert Opin. Drug Saf.
2004, 3, 405.
4. Ramsay, R. R.; Gravestock, M. B. Mini-Rev. Med. Chem.
2003, 3, 129.
5. Genin, M. J.; Allwine, D. A.; Anderson, D. J.; Barbachyn,
M. R.; Emmert, D. E.; Garmon, S. A.; Graber, D. R.;
Grega, K. C.; Hester, J. B.; Hutchinson, D. K.; Morris, J.;
Reischer, R. J.; Ford, C. W.; Zurenko, G. E.; Hamel, J.
C.; Schaadt, R. D.; Stapert, D.; Yagi, B. H. J. Med. Chem.
2000, 43, 953.
6. Weidner-Wells, M. A.; Werblood, H. M.; Goldschmidt, R.;
Bush, K.; Foleno, B. D.; Hilliard, J. J.; Melton, J.; Wira, E.;
Macielag, M. J. Bioorg. Med. Chem. Lett. 2004, 14, 3069.
7. Yi, C.; Im, W.; Cho, C.; Pak, S.; Pak, C.; Choe, S.; Yu, C.
Korean Patent No. 2001-0056360.
8. Gregory, W. A.; Brittelli, D. R.; Wang, C. L. J.; Wuonola,
M. A.; McRipley, R. J.; Eustice, D. C.; Eberly, V. S.;
Bartholomew, P. T.; Slee, A. M.; Forbes, M. J. Med.
Chem. 1989, 32, 1673.
9. Gravestock, M. B. PCT Int. Appl. WO 99/64417, 1999;
Gravestock, M. B. PCT Int. Appl. WO 00/21960, 2000.
10. Reck, F.; Zhou, F.; Giradot, M.; Kern, G.; Eyermann, C.
J.; Hales, N. J.; Ramsay, R. R.; Gravestock, M. B. J. Med.
Chem. 2005, 48, 499.
11. Gregory, W. A.; Brittelli, D. R.; Wang, C. L. J.; Kezar, H.
S.; Carlson, R. K.; Park, C.; Corless, P. F.; Miller, S. J.;
Rajagopalan, P.; Wuonola, M. A.; McRipley, R. J.; Eberly,
V. S.; Slee, A. M.; Forbes, M. J. Med. Chem. 1990, 33, 2569.
12. Sakamoto, T.; Kondo, Y.; Uchiyama, D.; Yamanaka, H.
Tetrahedron 1991, 47, 5111.
13. The synthetic procedures for preparation of these com-
pounds can be found in the following: Gravestock, M. B.;
Hales, N. J.; Hauck, S. I. PCT Int. Appl WO 2004/083205,
2004 and Gravestock, M. B.; Hales, N. J.; Hauck, S. I.
PCT Int. Appl WO 2004/083206, 2004.
In vitro and in vivo assays. The bacteria used in these
studies were taken from the AstraZeneca culture collec-
tion. Minimum inhibitory concentrations were generat-
ed by broth microdilution according to the Clinical and
Laboratory Standards Institute guidelines14 for the
majority of bacteria. Human liver monoamine
oxidase-A activity was assayed by adapting the method
of Flaherty.15 The Ki is expressed as a mean of three
experiments. Specific conditions were: 100 mM sub-
strate 4-(1-methyl-2-pyrryl)-1-methyl-1,2,3,6-tetrahy-
dropyridine, 82 nM human liver monoamine oxidase
A, 100 mM potassium phosphate buffer, pH 7.4, and
25 ꢂC. The mouse efficacy model experimental design
utilized the following protocol: S. pneumoniae
ARC548 was administered at 1 · 106 CFU to anesthe-
tized female C57BL/6 mice. Eighteen hours after infec-
tion, experimental compounds were administered orally
at 25 mg/kg, each mouse received two additional
administrations at 4-h intervals. Mice were sacrificed
and total CFU/lung were determined 2 days after
infection.
Acknowledgments
14. Clinical and Laboratory Standards Institute, Wayne, PA,
2003. Document M07-A6.
15. Flaherty, P.; Castagnoli, K.; Wang, Y.-X.; Castagnoli, N.,
Jr. J. Med. Chem. 1996, 39, 4756.
The authors thank Jeanette Jones and Adam Mondello
for the microbiological data and Tory Nash for MAO Ki
values.