LETTER
Synthesis of Sugar-fused GABA-analogs
1745
Table Characteristic 1H NMR (600 MHz, CDCl3, 27.0 °C), 13C NMR data (75.5 MHz, CDCl3) and MS (ES) data for compounds 25–29; 3JCH
coupling constants are based on HMBC experiments with an error margin of about 10%
Compound
HMBC 3JC-2;H-4
HMBC 3JCN;H-4
13C NMR (CN)
13C NMR (C-2)
1H NMR
MS (ES) [M + H]+
(H-4)/(3JH-4;H-5
)
a,b
a,b
25
26
27
28
29
116.2
116.5
116.8
116.4
116.3
40.5
41.2
40.8
41.2
41.3
3.77/(9.2 Hz)
4.01/(9.7 Hz)
3.22/(9.4 Hz)
3.50/(9.8 Hz)
4.03/(9.9 Hz)
622.2
622.2
318.1
318.1
698.3
3.6 Hz
7.3 Hz
2.0 Hz
8.0 Hz
a,b
a,b
3.8 Hz
8.5 Hz
a Coupling constants could not be determined due to spectral overlap and/or higher order effects.
b No NOE was observed between H-2a/H-2b and H-7.
(4) (a) Sofia, M. J.; Hunter, R.; Chan, T. Y.; Vaughan, A.;
Dulina, R.; Wang, H.; Gange, D. J. Org. Chem. 1998, 63,
2802. (b) Ghosh, M.; Dulina, R. R.; Kakarla, R.; Sofia, M. J.
J. Org. Chem. 2000, 65, 8387.
(5) Streicher, B.; Wünsch, B. Eur. J. Org. Chem. 2001, 115.
(6) Satzinger, G. Arzneim.-Forsch. 1994, 44, 261.
(7) Drew, H. D. K.; Goodyear, E. H.; Haworth, W. N. J. Chem.
Soc. 1927, 1242.
OR3
O
OR3
O
R1
R1
R2
R3O
R2
R3O
e
OMe
OMe
R3O
R3O
OMe
O
OH
O
16
R
1 = H; R2 = OBn; R3 = Bn
21 R1 = H; R2 = OH; R3 = H
22
17
R1 = OBn; R2 = H; R3 = Bn
R1 = OH; R2 = H; R3 = H
(8) The preference for the axial orientation of the cyano function
in compounds 25–29 may be the result of greater
thermodynamic stability coupled with kinetically preferred
axial attack due to stereoelectronic effects. In all cases small
amounts of another material (~5%) having the same
molecular ion peaks as compounds 25–29 could be isolated.
Preliminary NMR-data suggest that this material is identical
with the C-3 epimer of compounds 25–29.
(9) Typical procedure for the synthesis of the cyano-compounds
25–29: ketol 16–20 (0.1 mmol) was dissolved in acetonitrile
(5 mL) and trimethylsilyl-cyanide (0.5 mmol) was added.
The mixture was stirred for 5 min before TMS-OTf (0.3
mmol) was added at 0 °C. After 90 min, the ice-bath was
removed and the mixture was stirred for an additional 36 h.
Aq work up with sodium bicarbonate followed by
chromatographic purification afforded the C-ketosides 25–
29 in 50–55% yield.
f
OR3
R1
OR3
R1
O
R2
g
O
R2
R3O
OMe
OMe
R3O
R3O
R3O
OH
O
OMe
O
18 R1 = H; R2 = OMe; R3 = Me
19
23 R1 = H; R2 = OMe; R3 = Me
24
R1 = OMe; R2 = H; R3 = Me
R1 = OMe; R2 = H; R3 = Me
Scheme 2 Improved synthesis of 18 and 19; e) BF3 O(Et)2, MeOH
(10 equiv), CH3CN, 1 h, then C/Pd(OH)2, H2, MeOH, 3 h, 95%; f)
NaH, MeI, DMF, 55–60%; g) BF3 O(Et)2, wet CH3CN, quant.
.
(10) Tavorska, I.; Taravel, F. R. Adv. Carbohydr. Chem.
Biochem. 1995, 51, 15.
References
(11) Compounds 5 and 6 tend to lactamize slowly in methanolic
solution (< 10% over a time periode of 48 h). Compound 7
was hydrogenated in methanol:water (1:1) to prevent acid
catalyzed esterfication. Characteristic 1H NMR (600 MHz,
27.0°C and high resolution MS (ES)-data and (HRMS) data
for compounds 2 and 4–7. 2: 1H NMR (600 MHz, 27.0 °C,
CD3OD): = 2.70 (d, 3J = 15.0 Hz, 1 H), 2.73 (d, 3J = 15.0
Hz, 1 H), 3.10 (dd, 3J = 9.1 Hz, 3J = 10.0 Hz, 1 H), 3.34 (d,
3J~14 Hz, 1 H), 3.37–3.40 (m, 5 H), 3.47 (d, 3J = 9.1 Hz, 1
H), 3.48–3.50 (m, 4 H), 3.53–3.55 (m, 4 H), 3.57–3.60 (m, 3
H), 3.70 (s, 3 H). HRMS (ES, [M + H]+): m/z calcd for
322.18657, found 322.18634. 13C NMR (75 MHz, 25.0 °C,
CDCl3): 170.1, 85.1, 83.7, 79.2, 75.6, 73.3, 70.8, 61.2, 60.5,
60.2, 59.4, 51.9, 41.2, 38.7.
(1) (a) Hirschmann, R.; Nicolaou, K. C.; Pietranico, S.; Leahy,
E. M.; Salvino, J.; Arison, B.; Cichy, M. A.; Spoors, P. G.;
Shakespeare, W. C.; Sprengeler, P. A. J. Am. Chem. Soc.
1993, 115, 12550. (b) Hirschmann, R.; Hynes, J. J.; Cichy-
Knight, M. A.; van Rijn, R. D.; Sprengeler, P. A.; Spoors, P.
G.; Shakespeare, W. C.; Pietranico-Cole, S.; Barbosa, J.;
Liu, J. J. Med. Chem. 1998, 41, 1382. (c) Smith, A. B. I. I.
I.; Sasho, S.; Barwis, B. A.; Sprengeler, P.; Barbosa, J.;
Hirschmann, R.; Cooperman, B. S. Bioorg. Med. Chem. Lett.
1998, 8, 3133.
(2) (a) Nicolaou, K. C.; Trujillo, J. L.; Chibale, K. Tetrahedron
1997, 53, 8751. (b) Dinh, T. Q.; Smith, C. D.; Du, X.;
Armstrong, R. W. J. Med. Chem. 1998, 41, 981. (c) Liu, J.;
Underwood, D. J.; Cascieri, M. A.; Rohrer, S. P.; Cantin, L.-
D.; Chicchi, G.; Smith, A. B. III; Hirschmann, R. J. Med.
Chem. 2000, 43, 3827.
4: 1H NMR (600 MHz, 27.0 °C, CD3OD): = 2.67 (d,
3J = 15.4 Hz, 1 H), 2.71 (d, 1 H, 3J = 15.4 Hz), 3.67 (d,
3J = 10.0 Hz, 1 H). 13C NMR (75 MHz, 25.0 °C, CDCl3):
= 170.8, 82.2, 81.5, 75.8, 74.9, 71.5, 70.7, 61.7, 61.3, 59.4,
57.7, 52.2, 42.5, 38.8, HRMS (ES, [M + H]+): m/z calcd for
322.18657, found 322.18629.
(3) (a) Wunberg, T.; Kallus, C.; Opatz, T.; Henke, S.; Schmidt,
W.; Kunz, H. Angew. Chem. Int. Ed. 1998, 37, 2503.
(b) Kallus, C.; Opatz, T.; Wunberg, W.; Schmidt, W.;
Henke, S.; Kunz, H. Tetrahedron Lett. 1999, 40, 7783.
5: 1H NMR (600 MHz, 27.0 °C, CD3OD): = 2.56
Synlett 2001, No. 11, 1743–1746 ISSN 0936-5214 © Thieme Stuttgart · New York