Organic Letters
Letter
[using HOAt/EDC] was also tried for the synthesis of the short
peptides Fmoc-(Thp)n-OMe (n < 5). Fmoc-(Thp)4-OMe was prepared
several times in order to compare these two methods (see SI). Both
yield and purity were better with Fmoc-Thp-F, and the reaction times
were markedly shorter (12 h versus the 3 days needed with the activated
ester), clearly demonstrating the superiority of the amino acid fluoride
method.
(11) (a) Paglialunga Paradisi, M.; Torrini, I.; Pagani Zecchini, G.;
Lucente, G.; Gavuzzo, E.; Mazza, F.; Pochetti, G. Tetrahedron 1995, 51,
2379. (b) Torrini, I.; Pagani Zecchini, G.; Paglialunga Paradisi, M.;
Lucente, G.; Mastropietro, G.; Gavuzzo, E.; Mazza, F.; Pochetti, G.;
Spisani, S.; Traniello, S. Biopolymers 1996, 39, 327.
opportunities for wider use of Deg as a conformational control
element in the design of peptidomimetics.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental and spectroscopic data for all new
compounds. Further spectroscopic data and conforma-
tional analysis for Thp and Deg peptides (PDF)
(12) Crisma, M.; De Zotti, M.; Moretto, A.; Peggion, C.; Drouillat, B.;
Wright, K.; Couty, F.; Toniolo, C.; Formaggio, F. New J. Chem. 2015,
39, 3208.
(13) Homooligopeptides of cyclic quaternary residues often adopt
310-helical structures. For examples, see: (a) Cho, J.-il; Tanaka, M.;
Sato, S.; Kinbara, K.; Aida, T. J. Am. Chem. Soc. 2010, 132, 13176.
AUTHOR INFORMATION
Corresponding Authors
■
̈
(b) Maity, P.; Konig, B. Biopolymers 2008, 90, 8.
(14) Rentner, J.; Kljajic, M.; Offner, L.; Breinbauer, R. Tetrahedron
2014, 70, 8983.
ORCID
Notes
(15) A fully extended conformation (2.05-helix) exhibits a broad band
at about 3360 cm−1 in the Amide A region because all of its NHs are
intramolecularly (intraresidue) H-bonded. 310-helical peptides exhibit a
strong band at about 1666 cm−1 (amide I): (a) Polese, A.; Formaggio,
F.; Crisma, M.; Valle, G.; Toniolo, C.; Bonora, G. M.; Broxterman, Q.
B.; Kamphuis, J. Chem. - Eur. J. 1996, 2, 1104. The band is followed by a
less intense band at about 1515−1530 cm−1 (amide II). In contrast, in
2.05-helical peptides, the amide I absorption at 1660 cm−1 is split into
two components: (b) Toniolo, C.; Bonora, G. M.; Bavoso, A.;
Benedetti, E.; Di Blasio, B.; Pavone, V.; Pedone, C.; Barone, V.; Lelj, F.;
Leplawy, M. T.; Kaczmarek, K.; Redlinski, A. Biopolymers 1988, 27, 373.
The amide II band, significantly more intense than the amide I, is found
at wavenumbers lower than 1500 cm−1: (c) Formaggio, F.; Crisma, M.;
Ballano, G.; Peggion, C.; Venanzi, M.; Toniolo, C. Org. Biomol. Chem.
2012, 10, 2413. For α-helical structures, the amide I band falls typically
at about 1659 cm−1, while amide II is at about 1548 cm−1: (d) Nevskaya,
N. A.; Chirgadze, Y. N. Biopolymers 1976, 15, 637.
(16) Longo, E.; Moretto, A.; Formaggio, F.; Toniolo, C. Chirality
2011, 23, 756.
(17) Peggion, C.; Crisma, M.; Toniolo, C.; Formaggio, F. Tetrahedron
2012, 68, 4429.
(18) (a) Martin, R.; Hauthal, G. Dimethyl Sulfoxide; Van Nostrand-
Reinhold: Wokingham, U.K., 1975. (b) Pitner, T. P.; Urry, D. W. J. Am.
Chem. Soc. 1972, 94, 1399.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We acknowledge MIUR (Futuro in Ricerca 2013, Grant No.
RBFR13RQXM) and the ERC (Advanced Grant ROCOCO)
for support.
REFERENCES
■
(1) (a) Toniolo, C.; Benedetti, E. The fully-extended polypeptide
conformation. In Molecular Conformations and Biological Interactions;
Balaram, P., Ramaseshan, S.,Eds.; Indian Academy of Sciences:
Bangalore, India, 1991; pp 511−521. (b) Toniolo, C.; Benedetti, E.
Macromolecules 1991, 24, 4004.
(2) Åberg, A.; Yaremchuk, A.; Tukalo, M.; Rasmussen, B.; Cusack, S.
Biochemistry 1997, 36, 3084.
(3) Peggion, C.; Moretto, A.; Formaggio, F.; Crisma, M.; Toniolo, C.
Biopolymers 2013, 100, 621.
(4) (a) Marsella, M. J.; Rahbarnia, S.; Wilmot, N. Org. Biomol. Chem.
2007, 5, 391. (b) Lowik, D. W. P. M.; Leunissen, E. H. P.; van den
Heuvel, M.; Hansen, M. B.; van Hest, J. C. M. Chem. Soc. Rev. 2010, 39,
3394.
(5) (a) Benedetti, E.; Barone, V.; Bavoso, A.; Di Blasio, B.; Lelj, F.;
Pavone, V.; Pedone, C.; Bonora, G. M.; Toniolo, C.; Leplawy, M. T.;
Kaczmarek, K.; Redlinski, A. Biopolymers 1988, 27, 357. (b) Tanaka,
M.; Imawaka, N.; Kurihara, M.; Suemune, H. Helv. Chim. Acta 1999, 82,
494.
(6) (a) Lewis, N. J.; Inloes, R. L.; Hes, J. J. Med. Chem. 1978, 21, 1070.
(b) Torrini, I.; Pagani Zecchini, G.; Paglialunga Paradisi, M.; Lucente,
G.; Gavuzzo, E.; Mazza, F.; Pochetti, G.; Spisani, S.; Giuliani, A. L. Int. J.
Pept. Protein Res. 1991, 38, 495.
(7) Toniolo, C.; Crisma, M.; Formaggio, F.; Peggion, C. Biopolymers
2001, 60, 396.
̈
(19) Wuthrich, K. NMR of Proteins and Nucleic Acids; Wiley: New
̈
York, 1986.
(20) (a) Clayden, J.; Vassiliou, N. Org. Biomol. Chem. 2006, 4, 2667.
(b) Sola, J.; Helliwell, M.; Clayden, J. J. Am. Chem. Soc. 2010, 132, 4548.
(c) Sola, J.; Fletcher, S. P.; Castellanos, A.; Clayden, J. Angew. Chem.,
Int. Ed. 2010, 49, 6836. (d) Sola, J.; Morris, G. A.; Clayden, J. J. Am.
Chem. Soc. 2011, 133, 3712. (e) Brown, R. A.; Marcelli, T.; De Poli, M.;
Sola, J.; Clayden, J. Angew. Chem., Int. Ed. 2012, 51, 1395. (f) Brown, R.
A.; Diemer, V.; Webb, S. J.; Clayden, J. Nat. Chem. 2013, 5, 853.
(g) Byrne, L.; Sola, J.; Boddaert, T.; Marcelli, T.; Adams, R. W.; Morris,
G. A.; Clayden, J. Angew. Chem., Int. Ed. 2014, 53, 151. (h) Le Bailly, B.
A. F.; Byrne, L.; Diemer, V.; Foroozandeh, M.; Morris, G. A.; Clayden,
J. Chem. Sci. 2015, 6, 2313. (i) Le Bailly, B. A. F.; Byrne, L.; Clayden, J.
Angew. Chem., Int. Ed. 2016, 55, 2132. (j) Le Bailly, B. A. F.; Clayden, J.
Chem. Commun. 2016, 52, 4852. (k) Tomsett, M.; Maffucci, I.; Le
Bailly, B. A. F.; Byrne, L.; Bijvoets, S. M.; Lizio, M. G.; Raftery, J.; Butts,
C. P.; Webb, S. J.; Contini, A.; Clayden, J. Chem. Sci. 2017, 8, 3007.
(21) (a) De Poli, M.; Zawodny, W.; Quinonero, O.; Lorch, M.; Webb,
S. J.; Clayden, J. Science 2016, 352, 575. (b) Jones, J. E.; Diemer, V.;
Adam, C.; Raftery, J.; Ruscoe, R. E.; Sengel, J. T.; Wallace, M. I.; Bader,
A.; Cockroft, S. L.; Clayden, J.; Webb, S. J. J. Am. Chem. Soc. 2016, 138,
688. (c) Lister, F. G. A.; Le Bailly, B. A. F.; Webb, S. J.; Clayden, J. Nat.
Chem. 2017, 9, 420.
̀
̀
̀
̀
̀
(8) (a) Hayashi, T. Tetrahedron Lett. 1991, 32, 5369. (b) Woodward,
R. B.; Logusch, E.; Nambiar, K. P.; Sakan, K.; Ward, D. E.; Au-Yeung, B.
W.; Balaram, P.; Browne, L. J.; Card, P. J.; Chen, C. H. J. Am. Chem. Soc.
1981, 103, 3210. (c) Ward, D. E.; Liu, Y.; How, D. J. Am. Chem. Soc.
1996, 118, 3025.
(9) Strecker, A. Eur. J. Org. Chem. 1850, 75, 27.
(10) (a) Fmoc-amino acid fluorides can be obtained from Fmoc-
amino acids by treatment with cyanuric fluoride in the presence of
pyridine and are both stable enough to isolate and sufficiently reactive
to allow the formation of peptide bonds between bulky α-amino acids of
extreme steric hindrance. See: Carpino, L. A. J. Am. Chem. Soc. 1990,
112, 9651. Carpino, L. A. J. Am. Chem. Soc. 1993, 115, 4397. (b) An
alternative approach employing the in situ formation of active esters
D
Org. Lett. XXXX, XXX, XXX−XXX