Letter
NJC
melting points lower than 100 1C, which makes them interesting
precursors for processes such as chemical vapor depositions or
metallic based ionic liquids. Research on further applications and
expansion of the class of bifunctional triazolium cations are
underway in our laboratory.
Scheme 3 Synthesis of dicarbonyl rhodium(I) complexes 8 and 9.
Table 5 a-Arylation of propiophenone with aryl bromides
Acknowledgements
´
We are grateful to Consejo Nacional de Ciencia y Tecnologıa,
CONACyT (project 181448). DME, GNS, RGO, and RS wish to
acknowledge the SNI for the distinction and the stipend
received.
Entry
Ar
Cat.
Yielda (%)
Notes and references
1
2
3
4
5
6
7
8
9
Ph
Ph
4a
5a
4a
5a
4a
5a
4a
5a
4a
5a
87
85
82
83
90
88
85
86
81
83
(4-Me)C6H4
(4-Me)C6H4
(4-CN)C6CH4
(4-CN)C6CH4
(4-MeO)C6H4
(4-MeO)C6H4
(4-NO2)C6H4
(4-NO2)C6H4
1 For recent reviews see: (a) Z. Yacob and J. Liebscher, Chemistry
of 1,2,3-triazolium salts, Top. Heterocycl. Chem., Springer-
Verlag, Berlin Heidelberg, 2014, DOI: 10.1007/7081_2014_123;
(b) J. M. Aizpurua, R. M. Fratila, Z. Monasterio, E. A. Perez-
Esnaola, A. Irastorza and M. Sagartzazu-Aizpurua, New J. Chem.,
2014, 38, 474–480.
´
10
2 See for example: (a) S. Hanelt and J. Liebscher, Synlett, 2008,
1058–1060; (b) J. Shah, S. S. Khan, H. Blumethal and
J. Liebscher, Synthesis, 2009, 3975–3982; (c) K. Ohmatsu,
M. Kiyokawa and T. Ooi, J. Am. Chem. Soc., 2011, 133,
1307–1309; (d) M. T. Berry, D. Castrejon and J. E. Hein,
Org. Lett., 2014, 16, 3676–3679.
3 See for example: (a) K. M. Mullen, J. Mercurio, C. J. Serpell
and P. D. Beer, Angew. Chem., Int. Ed., 2009, 48, 4781–4784;
(b) A. Kumar and P. S. Pandey, Org. Lett., 2008, 10, 165–168;
(c) N. G. White and P. D. Beer, Org. Biomol. Chem., 2013, 11,
1326–1333; (d) F. Coutrot and E. Busseron, Chem. – Eur. J.,
2008, 14, 4784–4787; (e) Z.-J. Zhang, M. Han, H.-Y. Zhang
and Y. Liu, Org. Lett., 2013, 15, 1698–1701.
4 Z. Yacob and J. Liebscher, 1,2,3-triazolium Salts as Versatile
new class of Ionic Liquids, in Ionic Liquids-Classes and
Properties, ed. S. Handy, InTech, 2011, DOI: 10.5772/24349.
5 See for example (a) P. Mathew, A. Neels and M. Albrecht,
J. Am. Chem. Soc., 2008, 130, 13534–13535; (b) G. Guisado-
Barrios, J. Bouffard, B. Donnadieu and G. Bertrand, Angew.
Chem., Int. Ed., 2010, 49, 4759–4762; (c) J. Bouffard, B. K.
Keitz, R. Tonner, G. Guisado-Barrios, G. Frenking, R. H.
Grubbs and G. Bertrand, Organometallics, 2011, 30,
2617–2627; (d) J. D. Crowley, A.-L. Lee and K. J. Kilpin, Aust.
J. Chem., 2011, 64, 1118–1132; (e) B. Schulze and U. S.
Schubert, Chem. Soc. Rev., 2014, 43, 2522–2571.
Reaction conditions: 1 mmol propiophenone, 1.1 mmol arylbromide,
a
1.5 mmol NaOtBu, 5 mL THF, 80 1C, 3 h. Isolated yields.
complexes are in the range observed for previously reported metal
complexes containing MIC ligands,17 and as expected, in much
higher fields compared to classical NHC analogues.18
To evaluate the donor properties of the new triazol-5-ylidene
ligands, the corresponding rhodium(I) dicarbonyl chloride
complexes 8 and 9 were synthesized by the treatment of
complexes 4b and 5b with an excess of carbon monoxide in
dichloromethane (Scheme 3). Complexes 8 and 9 display in 13
C
NMR spectroscopy two new pairs of two doublets in the range
of 180.6–186.6 ppm ( J = 53 and 79 Hz average), indicating the
complete cyclooctadiene removal and the cis arrangement of
the CO ligands around the tetracoordinated metal center.
The chemical shift of the MIC-rhodium peaks in the carbony-
lated complexes moved upfield (B160 ppm) in comparison to the
cyclooctadiene precursors (B173 ppm), due to the more electron
poor nature of the carbonylated metal center. The average CO
vibration frequency for 8 and 9 (vav = 2027 cmÀ1) indicates that the
electron donor capacity of the new triazol-5-ylidenes is superior to
those of conventional NHCs (vav = 2039–2041 cmÀ1 19
and cyclic
)
(alkyl)(amino) carbenes (vav = 2036 cmÀ1),20 but inferior to those
for previously reported MIC ligands (vav = 2016–2025 cmÀ1).21
To preliminary test the catalytic performance of the new MIC
complexes, we used the palladium derivatives 4a and 5a in the
alpha arylation of propiophenone. As observed in Table 5, both
complexes display efficient conversions to the coupled products
in short periods of time and low catalyst loadings.
6 (a) S. S. Khan, J. Shah and J. Liebscher, Tetrahedron, 2010,
66, 5082–5088; (b) S. S. Khan, J. Shah and J. Liebscher,
Tetrahedron, 2011, 67, 1812–1820.
´
7 (a) D. Mendoza-Espinosa, G. E. Negron-Silva, L. Lomas-
´
Romero, A. Gutierrez-Carrillo and D. Soto-Castro, Synthesis,
´
2013, 2431–2437; (b) D. Mendoza-Espinosa, G. E. Negron-
In summary, we have provided easy access to 1,2,3-triazolium
salts which are efficient ionic liquids for the Baylis–Hillman
addition and suitable precursors for transition metal triazol-5-
ylidene complexes. Remarkably, all new MIC-complexes feature
´
´
Silva, L. Lomas-Romero, A. Gutierrez-Carrillo and R. Santillan,
Synth. Commun., 2014, 44, 807–817.
ˇ´
8 V. Jurcık and R. Whilhem, Green Chem., 2005, 7, 844–848.
New J. Chem.
This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2015