COMMUNICATIONS
M. A. Paver, P. R. Raithby, M.-A. Rennie, C. A. Russell, D. S. Wright,
Koch, G. Frenking, G. Boche, Chem. Ber. 1991, 124, 543; c) D.
Steinborn, T. Rüffer, C. Bruhn, F. W. Heinemann, Polyhedron 1998,
17, 3275; d) W. Hollstein, K. Harms, M. Marsch, G. Boche, Angew.
Chem. 1988, 100, 868; Angew. Chem. Int. Ed. Engl. 1988, 27, 848.
[16] a) W. Kutzelnigg, Angew. Chem. 1984, 96, 262; Angew. Chem. Int. Ed.
Engl. 1984, 23, 272; b) A. E. Reed, F. Weinhold, J. Am. Chem. Soc.
1986, 108, 3586; c) D. A. Bors, A. Streitwieser, J. Am. Chem. Soc. 1986,
108, 1397; d) A. E. Reed, P. von R. Schleyer, J. Am. Chem. Soc. 1990,
112, 1434; e) U. Salzner, P. von R. Schleyer, J. Am. Chem. Soc. 1993,
115, 10231; f) T. Stefan, R. Janoschek, J. Mol. Model. 2000, 6, 282.
[17] J. K. Brask, T. Chivers, M. Parvez, G. Schatte, Angew. Chem. 1997, 109,
2075; Angew. Chem. Int. Ed. Engl. 1997, 36, 1986.
[18] J. K. Brask, T. Chivers, G. P. A. Yap, Inorg. Chem. 1999, 38, 5588.
[19] J. K. Brask, T. Chivers, M. Parvez, G. P. A. Yap, Inorg. Chem. 1999, 38,
3594.
[20] P. Blais, J. K. Brask, T. Chivers, G. Schatte, Inorg. Chem. 2001, 40, 384.
[21] In this sense the (CH2)S(NtBu)3 dianion represents the framework of
a structure reminiscent to inverse crowns with ancillary bonded
peripherical lithium atoms developed by Mulvey et al. For a review
see: R. E. Mulvey, Chem. Commun. 2001, 1049.
Angew. Chem. 1994, 106, 1334; Angew. Chem. Int. Ed. Engl. 1994, 33,
3
1277; g) P(NR)4 : P. R. Raithby, C. A. Russell, A. Steiner, D. S.
Wright, Angew. Chem. 1997, 109, 670; Angew. Chem. Int. Ed. Engl.
2
1997, 36, 649; h) Se(NR)3 : T. Chivers, M. Parvez, G. Schatte, Inorg.
2
Chem. 1996, 35, 4094; i) Te(NR)3 : T. Chivers, X. Gao, M. Parvez,
Angew. Chem. 1995, 107, 2756; Angew. Chem. Int. Ed. Engl. 1995, 34,
6
2549; j) [(PhN)2PN]3 : G. T. Lawson, F. Rivals, M. Tascher, C. Jacob,
J. F. Bickley, A. Steiner, Chem. Commun. 2000, 341.
[2] Reviews: a) R. Fleischer, D. Stalke, Coord. Chem. Rev. 1998, 176, 431;
b) D. Stalke, Proc. Indian Acad. Sci. 2000, 112, 155.
[3] R. Fleischer, S. Freitag, F. Pauer, D. Stalke, Angew. Chem. 1996, 108,
208; Angew. Chem. Int. Ed. Engl. 1996, 35, 204.
[4] R. Fleischer, S. Freitag, D. Stalke, J. Chem. Soc. Dalton Trans. 1998, 193.
[5] R. Fleischer, D. Stalke, Organometallics 1998, 17, 832.
[6] R. Fleischer, A. Rothenberger, D. Stalke, Angew. Chem. 1997, 109,
1140; Angew. Chem. Int. Ed. Engl. 1997, 36, 1105.
[7] R. Fleischer, B. Walfort, A. Gburek, P. Scholz, W. Kiefer, D. Stalke,
Chem. Eur. J. 1998, 4, 2266.
[8] For a general overview see: A. W. Johnson, Ylid Chemistry, Academic
Press, New York, 1966.
[22] D. Stalke, Chem. Soc. Rev. 1998, 27, 171.
[9] Reviews: a) H. König, Fortschr. Chem. Forsch. 1968, 9, 487; b) L.
Weber, Angew. Chem. 1983, 95, 539; Angew. Chem. Int. Ed. Engl.
1983, 22, 516.
[23] G. M. Sheldrick, Acta Crystallogr. Sect. A 1990, 46, 467.
[24] G. M. Sheldrick, SHELXL-97, Program for Crystal Structure Refine-
ment, Universität Göttingen, 1997.
[10] a) G. Boche, K. Marsch, K. Harms, G. M. Sheldrick, Angew. Chem.
1985, 97, 577; Angew. Chem. Int. Ed. Engl. 1985, 24, 573; b) H. J. Gais,
U. Dingerdissen, C. Krüger, K. Angermund, J. Am. Chem. Soc. 1987,
109, 3775; c) M. Zehnder, J. F. Müller, M. Neuburger, Acta Crystal-
logr. Sect. C 1997, 53, 419; d) J. F. K. Müller, M. Neuburger, M.
Zehnder, Helv. Chim. Acta 1997, 80, 2182.
[25] H. D. Flack, Acta Crystallogr. Sect. A 1983, 39, 876.
[26] R. S. Cahn, C. Ingold, V. Prelog, Angew. Chem. 1966, 78, 413; Angew.
Chem. Int. Ed. Engl. 1966, 5, 385.
[11] a) D. Hänssgen, R. Steffens, J. Organomet. Chem. 1982, 236, 53; b) D.
Hänssgen, R. Steffens, Z. Naturforsch.
B 1985, 40, 919; c) D.
Hänssgen, R. Plum, Chem. Ber. 1987, 120, 1063.
Total Synthesis of Apoptolidin: Part 1.
Retrosynthetic Analysis and Construction of
Building Blocks**
[12] a) D. Hänssgen, H. Hupfer, M. Nieger, M. Pfendtner, R. Steffens, Z.
Anorg. Allg. Chem. 2001, 627, 17; b) B. Walfort, R. Bertermann, D.
Stalke, Chem. Eur. J. 2001, 7, 1424.
[13] B. Walfort, A. P. Leedham, C. A. Russell, D. Stalke, Inorg. Chem., in press.
[14] Crystal structure data for 1 and 2: The data were collected from shock-
cooled crystals on an BRUKER SMART-APEX CCD diffractometer
(graphite-monochromated MoKa radiation, l 71.073 pm) equipped
with a low-temperature device at 193(2) K.[22] The structures were
solved by direct methods (SHELXS-97)[23] and refined by full-matrix
least-squares methods against F 2 (SHELXL-97).[24] R values defined
K. C. Nicolaou,* Yiwei Li,
Konstantina C. Fylaktakidou, Helen J. Mitchell,
Heng-Xu Wei, and Bernd Weyershausen
From the many macrolide type structures recently isolated
from nature, that of apoptolidin (1, Scheme 1),[1] isolated from
Nocardiopsis sp., stands out. Its distinction as a synthetic
as R1 SjjFoj jF jj SjF j, wR2 [Sw(Fo2 F22 Sw(F 22]0.5
,
w
/
/
c
o
c
o
[s2(Fo2 (g1P)2 g2P] 1, P 1/3[max(Fo2,0) 2Fc2]. 1: C25H61Li2N7S,
Mr 505.75, orthorhombic, space group Pbca, a 1996.67(13),
b 1649.92(10), c 2027.39(14) pm, V 6.6789(8) nm3, Z 8,
1calcd 1.006 Mgm 3, m 0.120 mm 1, F(000) 2256, 26858 reflec-
tions measured, 4730 unique, R(int) 0.0931, wR2(all data) 0.1880,
R1(I > 2s(I)) 0.0657, g1 0.1225, g2 1.6000 for 341 parameters and
no restraints. 2: C18H43Li2N5OS, Mr 391.51, hexagonal, space group
P63, a b 1768.91(8), c 1506.06(10) pm, V 4.0812(4) nm3, Z 6,
1calcd 0.956 Mgm 3, m 0.132 mm 1, F(000) 1296, 16134 reflec-
tions measured, 3887 unique, R(int) 0.0647, wR2(all data) 0.1679,
R1(I > 2s(I)) 0.0627, g1 0.0974, g2 0.0 for 337 parameters and 289
restraints and a Flack x parameter of 0.2(2).[25] The hydrogen atoms at
the methylene atom C1 in 1 were located by difference Fourier syntheses
and refined freely. All other hydrogen atoms of the molecule were
refined by using a riding model. Compound 2 crystallized in the
noncentrosymmetric space group P63. An additional mirror plane in
the O3Li3 ring plane to give the higher symmetric space group P63/m is
precluded by the coordinated tmeda molecules and the N-bonded tert-
butyl groups. As the chirality is induced only in the periphery strictly
spoken the molecule is not planar chiral.[26] Crystallographic data
(excluding structure factors) for the structures reported in this paper
have been deposited with the Cambridge Crystallographic Data
Centre as supplementary publication nos CCDC-164904 (1) and
CCDC-164905 (2). Copies of the data can be obtained free of charge
on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK
(fax: (44)1223-336-033; e-mail: deposit@ccdc.cam.ac.uk).
[*] Prof. Dr. K. C. Nicolaou, Y. Li, Dr. K. C. Fylaktakidou,
Dr. H. J. Mitchell, Dr. H.-X. Wei, Dr. B. Weyershausen
Department of Chemistry and The Skaggs Institute for Chemical
Biology
The Scripps Research Institute
10550 North Torrey Pines Road, La Jolla, CA 92037 (USA)
Fax : (1)858-784-2469
and
Department of Chemistry and Biochemistry
University of California San Diego
9500 Gilman Drive, La Jolla, CA 92093 (USA)
[**] We thank Dr. D. H. Huang and Dr. G. Siuzdak for NMR spectroscopic
and mass spectrometric assistance, respectively. This work was
financially supported by the National Institutes of Health (USA),
the Skaggs Institute for Chemical Biology, American Biosciences, a
pre-doctoral fellowship from Boehringer Ingelheim (Y.L.), a post-
doctoral fellowship the George Hewitt Foundation (K.C.F.), and
grants from Abbott Laboratories, ArrayBiopharma, Bayer, Boeh-
ringer Ingelheim, DuPont, Glaxo, Hoffmann-LaRoche, Merck, No-
vartis, Pfizer, and Schering Plough.
Supporting information for this article (selected physical properties of
compounds 2, 3, 4, 51, and 69) is available on the WWW under
[15] a) R. Armstutz, T. Laube, W. B. Schweizer, D. Seebach, J. D. Dunitz,
Helv. Chim. Acta 1984, 67, 224; b) W. Zarges, M. Marsch, K. Harms, W.
Angew. Chem. Int. Ed. 2001, 40, No. 20
ꢀ WILEY-VCH Verlag GmbH, D-69451 Weinheim, 2001
1433-7851/01/4020-3849 $ 17.50+.50/0
3849