C. Chamorro et al. / Bioorg. Med. Chem. Lett. 11 (2001) 3085–3088
3087
Table 1. Inhibitory effect of nucleosides 5–18, 21–24, TSAO-T and
AZT against HIV-1 and HIV-2 replication in CEM cellsa
active N-3-carboxymethyl nucleoside analogues here
described (i.e., 9, 10, 18) keep full inhibitory activity
against mutant HIV-1 reverse transcriptase that contain
the Glu138Lys mutation (Table 2). These findings are in
agreement with our observation that the novel nucleo-
side analogues keep inhibitory potential against a
mutant HIV-1/138Lys strain in cell culture. Indeed,
compounds 9, 10 and 18 showed an EC50 against HIV-
1/138Lys of 2.0, 8.2 and 4.0 mM, respectively. Our
results indicate that the novel nucleoside analogues
interact differently with HIV-1 RT than the TSAO
derivatives, and thus, N-3-carboxymethyl-TBDMS-sub-
stituted nucleoside analogues should be considered as
members of a novel and original class of NNRTIs.
b
c
Compds
EC50b (mM)
HIV-1
EC50 (mM)
HIV-2
CC50 (mM)
5
6
7
8
>10
>50
>10
>10
4.5ꢂ2.1
1.8ꢂ2.1
32ꢂ10.6
117ꢂ41.6
4.0ꢂ0.0
20ꢂ7.1
>250
>10
>10
>50
>10
>10
25.7ꢂ2.8
57.1ꢂ24.3
102ꢂ9.8
30ꢂ1.5
23.0ꢂ2.4
29.3ꢂ10.7
>125
9
10
11
12
13
14
15
16
17
18
21
22
23
24
TSAO-T
AZT
>10
>125
>250
>10
>250
>250
>250
>2
>10
>10
>50
>10
>250
26ꢂ1.4
>250
>250
>250
21.6ꢂ8.7
20.7ꢂ0.2
56.4ꢂ27.5
>250
>250
>2
4.5ꢂ0.7
Acknowledgements
ꢁ10
>250
5.0ꢂ1.4
20.3ꢂ0.4
We thank Ann Absillis and Lizette van Berckelaer for
excellent technical assistance. We also thank the Ministery
of Education of Spain for grants to C.C., E.L. and
M.C.B and GlaxoSmithKline S.A. for an award to
M.C.B. The Spanish CICYT (project SAF2000-0153-
C02-01), the Comunidad de Madrid (Project 08.2/0044/
2000), the European Commission (Project QLK2-CT-
2000-00291) and FORTIS/ISEP are also acknowledged
for financial support.
>250
>250
>20
0.004ꢂ0.001
>250
0.06ꢂ0.01
0.003ꢂ0.002
14ꢂ2
6.0ꢂ0.1
aData represent the mean values for three independent experiments.
b50% Effective concentration, or compound concentration required to
inhibit HIV-induced cytopathicity by 50%.
c50% Cytotoxic concentration, or compound concentration required
to reduce the viability of mock-infected cells by 50%.
Table 2. Sensitivity of HIV-1 wild-type Glu138 and mutant Glu138-
Lys recombinant RTs to the inhibitory effect of 9, 10, 18 and TSAO-
Ta
References and Notes
1. Saag, M. S.; Kilby, J. M. Nature Medicine 1999, 5, 609.
2. Katz, R. A.; Skalka, A. M. Annu. Rev. Biochem. 1994, 63,
133.
3. Jonckheere, H.; Anne, J.; De Clercq, E. Med. Res. Rev.
2000, 20, 129.
4. Schinazi, R. F. Perspect. Drug Discov. Des. 1993, 1, 151.
5. De Clercq, E. Clin. Microbiol. Rev. 1997, 10, 674.
6. De Clercq, E. J. Med. Chem. 1995, 38, 2491.
7. De Clercq, E. Antiviral Res. 1998, 38, 153.
8. Pedersen, O. S.; Pedersen, E. B. Antiviral Chem. Chemother.
1999, 10, 285.
9. (a) Jacobo-Molina, A.; Ding, J.; Nanni, R. G.; Clark, A. D.,
Jr.; Lu, X.; Tantillo, C.; Williams, R. L.; Kamer, G.; Ferris,
A. L.; Clark, P.; Hizi, A.; Hughes, S. H.; Arnold, E. Proc.
Natl. Acad. Sci. U.S.A. 1993, 90, 6320. (b) Tantillo, C.; Ding,
J.; Jacobo-Molina, A.; Nanni, R. G.; Boyer, P. L.; Hughes,
S. H.; Pauwels, R.; Andries, K.; Janssen, P. A. J.; Arnold, E.
J. Mol. Biol. 1994, 243, 369.
10. Nanni, R. G.; Ding, J.; Jacobo-Molina, A.; Hughes, S. H.;
Arnold, E. Perspect. Drug Discov. Des. 1993, 1, 129.
11. Smerdon, S. J.; Jager, J.; Wang, J.; Kohlstaedt, L. A.;
¨
Compds
IC50b (mM)
Glu138
(wild-type HIV-1 RT)
Glu138Lys
(mutant HIV-1 RT)
9
10
18
TSAO-T
138
207
33.8
3.6
158
335
47.4
>500
a
.
RT reaction was carried out in the presence of poly(C) oligo(dG) and
[3H]dGTP as the template/primer and radiolabeled substrate, respec-
tively.
b50% Inhibitory concentration or compound concentration required
to inhibit the enzyme activity by 50%.
The presence of only one TBDMS goup at the 50-posi-
tion (12), or three TBDMS groups at 50-, 30- and 20-
position of the ribose (11) results in markedly decreased
antiviral efficacy. A notable exception was compound
14, that contained a single TBDMS moiety at the 20-
position of the ribose ring, but still showed moderate
anti-HIV-1 activity (Table 1). Although several active
compounds showed cytostatic activities between 20 and
100 mM, the viral selectivity amounted up to ꢁ15 for
several compounds, including 10 and 14.
Chirino, A. J.; Friedman, J. M.; Rice, P. A.; Steitz, T. A. Proc.
Natl. Acad. Sci. U.S.A. 1994, 91, 3911.
12. (a) Balzarini, J.; Perez-Perez, M. J.; San-Felix, A.; Schols,
D.; Perno, C. F.; Vandamme, A. M.; Camarasa, M. J.; De
Clercq, E. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 4392. (b)
Camarasa, M. J.; Perez-Perez, M. J.; San-Felix, A.; Balzarini,
J.; De Clercq, E. J. Med. Chem. 1992, 35, 2721.
13. Camarasa, M. J.; San-Felix, A.; Perez-Perez, M. J.;
Velazquez, S.; Alvarez, A.; Chamorro, C.; Jimeno, M. L.;
Perez, C.; Gago, F.; De Clercq, E.; Balzarini, J. J. Carbohydr.
Chem. 2000, 19, 451.
As demonstrated earlier for the TSAO derivatives, the
TBDMS-substituted nucleoside analogues described
herein inhibit HIV-1 reverse transcriptase.
However, in contrast with TSAO-T and other TSAO
derivatives that contain a 30-spiro moiety in addition to
a TBDMS group at 20 and 50 of the ribose ring, the
14. Balzarini, J.; Perez-Perez, M. J.; San-Felix, A.; Camarasa,
M. J.; Bathurst, I. C.; Barr, P. J.; De Clercq, E. J. Biol. Chem.
1992, 267, 11831.