A Ferrocene-C60-Dinitrobenzene Triad
J. Phys. Chem. A, Vol. 106, No. 4, 2002 655
The absorption intensity of the transient absorption band of
N-(3′,5′-dinitrobenzoyl)-2-(ferrocenyl)fulleropyrrolidine is found
to be considerably lower than that of fulleropyrrolidine (1/60).
Although the peak at 720 nm is broad, this weak absorption
has also been attributed to the triplet state because the lifetime
is almost the same as that obtained for fulleropyrrolidine (rate
constant ) 1.9 × 105 s-1). One of the reasons for the low
distribution of the triplet state may be the faster charge-
separation process of the triad than that of dyad.
Acknowledgment. The authors are thankful to the donors
of the Petroleum Research Fund, administered by the American
Chemical Society, National Institutes of Health, National
Science Foundation CCLI and A&I (to FD), and the Dreyfus
Foundation (to MES) for support of this work. The authors are
also thankful to the High Performance Computing Center of
the Wichita State University for lending SGI ORIGIN 2000
computer time.
Supporting Information Available: The ESI-mass spectra
in CH2Cl2 matrix, UV-visible spectra in n-hexane, and 1H NMR
spectra in CDCl3/CS2 (1:1 v/v) of 2-(ferrocenyl)fulleropyrroli-
dine and N-(3′5′-dinitrobenzoyl)-2-(ferrocenyl)-fulleropyrroli-
dine. This material is available free of charge via the Internet
Figure 9 compares the energy level diagrams for the different
photochemical events of fulleropyrrolidine, 2-(ferrocenyl)-
fulleropyrrolidine and N-(3′,5′-dinitrobenzoyl)-2-(ferrocenyl)-
fulleropyrrolidine. The high triplet yield in fulleropyrrolidine
is attributed to the high quantum yield of intersystem crossing
of the singlet excited state (Figure 9a). The observed fast charge-
separation rates in the dyad and triad are in good agreement
with lower ion-pair states compared with the triplet states. That
is, the energy gaps between the singlet excited states and the
ion pair states are about 0.5 eV (energy diagrams b and c in
Figure 9), which may be normal or top region of the Marcus
parabola for fullerene derivatives.53 This suggests the unlikely
formation of a direct triplet state of the fullerene entity via
intersystem crossing of the singlet excited state, which is in
good agreement with the observed decrease in the formation of
the triplet excited state in Figure 8. The faster charge-
recombination rate of the ion-pair of the triad compared to that
of the dyad could be attributed to spatial back electron transfer
from the dinitrobenzene entity to the ferrocene entity. This
provides indirect evidence for the migration of the electron
toward the dinitrobenzene entity in the ion pair state of the triad,
although this process is energetically unfavorable. This unique
photochemical and photophysical behavior is further supported
by the ab initio calculated distribution of LUMO as shown in
Figure 4b.
References and Notes
(1) Martin, N.; Sachez, B.; Illescas, B.; Perez, I. Chem. ReV. 1998, 98,
2427.
(2) Prato, M.; Maggini, M. Acc. Chem. Res. 1998, 31, 519.
(3) Carano, M.; Ceroni, P.; Paolucci, F.; Roffia, S.; Da Ros, T.; Prato,
M.; Sluch, M. I.; Pearson, C.; Petty, M. C.; Bryce, M. R. J. Mater. Chem.
2000, 10, 269.
(4) Fullerene and Related Structures; Hirsch, A., Ed.; Springer: Berlin,
1999; Vol. 199.
(5) Long, N. J. Angew. Chem., Int. Ed. Engl. 1995, 34, 21.
(6) Molecular Electronic-Science and Technologie; Aviram, A., Ed.;
Engineering Foundation: New York, 1989.
(7) Aviram, A.; Ratner, M. Chem. Phys. Lett. 1974, 29, 277.
(8) Launay, J. P. In Molecular Electronics in Granular Nanoelectronics;
Ferry, D. K., Ed.; New York, 1995.
(9) Introduction to Molecular Electronics; Petty, M. C., Bryce, M. R.,
Bloor, D., Eds.: Oxford University Press: New York, 1995.
(10) Prasad, P. N.; Williams, D. J. Introduction to Nonlinear Optical
Effects in Molecules and Polymers; Wiley: New York, 1991.
(11) Nalwa, M. S. AdV. Mater. 1993, 5, 341.
(12) Photoinduced Electron Transfer; Fox, M. A., Channon, M., Eds.;
Elsevier: Amsterdam, 1988; Parts A-D.
(13) Kurreck, H.; Huber, M. Angew. Chem., Int. Ed. Engl. 1995, 34,
849.
(14) Staab, H. A.; Feurer, A.; Hauck, R. Angew. Chem., Int. Ed. Engl.
1994, 33, 2428.
Summary
(15) Roest, M. R.; Verhoeven, J. W.; Schiddeboon, W.; Warman, J. M.;
Lawson, J. M.; Paddon-Row, M. N. J. Am. Chem. Soc. 1996, 118, 1762.
(16) Maruyama, K.; Osuka, A. Pure Appl. Chem. 1990, 62, 1511.
(17) Gust, D.; Moore, T. A. Science 1989, 244, 35.
(18) (a) Gust, D.; Moore, T. A. Top. Curr. Chem. 1991, 159, 103. (b)
Gust, D.; Moore, T. A.; Moore, A. L. Pure Appl. Chem. 1998, 70, 2189.
(19) Gust, D.; Moore, T. A.; Moore, A. L. Acc. Chem. Res. 1993, 26,
198.
(20) Wasielewski, M. R. Chem. ReV. 1992, 92, 435.
(21) Paddon-Row, M. N. Acc. Chem. Res. 1994, 27, 18.
(22) Sutin, N. Acc. Chem. Res. 1983, 15, 275.
(23) Bard, A. J.; Fox, M. A. Acc. Chem. Res. 1995, 28, 141.
(24) Meyer, T. J. Acc. Chem. Res. 1989, 22, 163.
Synthesis of a supramolecular triad comprised of three redox
active entities, namely, ferrocene, C60, and dinitrobenzene, has
been accomplished. Electrochemical studies revealed multiple
redox processes involving all three redox active entities. The
observed eight reversible redox couples within the accessible
potential window of o-dichlorobenzene suggest that fullerene
bearing redox active groups which undergo reversible redox
reactions may be more suitable for building molecular charge
storage devices than pristine fullerenes. Computational calcula-
tions performed using the ab initio B3LYP/3-21G(*) method
predicted a plausible geometry and electronic structure of the
investigated triad, whereas such calculations performed by
semiempirical PM3 or Hartree-Fock 3-21G(*) revealed either
an incorrect geometry or incorrect electronic structure which
did not agree with the experimental observations. The calculated
HOMO orbital by the B3LYP/3-21G(*) method was found to
lie primarily on the ferrocene entity, whereas the LUMO orbitals
are mainly located on the C60 entity with small orbital
coefficients on the dinitrobenzene entity. The orbital coefficients
of the subsequent LUMO orbitals track the observed site of
electrochemical reductions of the triad. Both steady-state
fluorescence and time-resolved picosecond transient absorption
studies revealed efficient charge separation and charge recom-
bination in the studied triad, and this has been attributed to the
close spacing of the entities of the triad to one another. The
estimated rise and decay rate constants are found to be slightly
higher for the triad as compared to the corresponding rates of
the dyad.
(25) Piotrowiak, P. Chem. Soc. ReV. 1999, 28, 143.
(26) Imahori, H.; Sakata, Y. AdV. Mater. 1997, 9, 537.
(27) Diederich, F.; Gomez-Lopez, M. Chem. Soc. ReV. 1999, 28, 263.
(28) Guldi, D. M. Chem. Commun. 2000, 321.
(29) (a) Liddell, P. A.; Kuciauskas, D.; Sumida, J. P.; Nash, B.; Nguyen,
D.; Moore, A. L.; Moore, T. A.; Gust, D. J. Am. Chem. Soc. 1997, 119,
1400. (b) Kuciauskas, D.; Liddell, P. A.; Lin, S.; Johnson, T. E.; Wighorn,
S. L.; Lindsey, J. S.; Moore, A. L.; Moore, T. A.; Gust, D. J. Am. Chem.
Soc. 1999, 121, 8604. (c) Carbonera, D.; Di Valentin, M.; Corvaja, C.;
Agostini, G.; Giacometti, G.; Liddell, P. A.; Kuciauskas, D.; Moore, A. L.;
Moore, T. A.; Gust, D. J. Am. Chem. Soc. 1998, 120, 4398.
(30) Luo, C.; Guldi, D. M.; Imahori, H.; Tamaki, K.; Sakata, Y. J. Am.
Chem. Soc. 2000, 122, 6535.
(31) D’Souza, F.; Deviprasad, G. R.; El-Khouly, M. E.; Fujitsuka, M.;
Ito, O. J. Am. Chem. Soc. 2001, 123, 5277-5284 and references therein.
(32) Maggini, M.; Karlsson, A.; Scorrano, G.; Sandona, G.; Farnia, G.;
Prato, M. J. Chem. Soc., Chem. Commun. 1994, 589.
(33) Prato, M.; Maggini, M.; Giacometti, C.; Scorrano, G.; Sandona,
G.; Farnia, G. Tetrahedron 1996, 52, 5221.
(34) Noworyta, K.; Krinichnaya, E. P.; Kutner, W.; Smith, P. M.;
Deviprasad, G. R.; D’Souza, F. Fullerenes 2000: Electrochemistry and
Photochemistry. Proc. Electrochem. Soc. 2000, 8, 54; Fukuzumi, S.,
D’Souza, F., Guldi, D. M., Eds.