Published on Web 03/14/2003
2,3-Anhydro Sugars in Glycoside Bond Synthesis. Highly
Stereoselective Syntheses of Oligosaccharides Containing r-
and â-Arabinofuranosyl Linkages
Rajendrakumar Reddy Gadikota,† Christopher S. Callam,† Timothy Wagner,‡
Brian Del Fraino,‡ and Todd L. Lowary*,†
Departments of Chemistry, The Ohio State UniVersity, 100 West 18th AVenue,
Columbus, Ohio 43210, and Youngstown State UniVersity, One UniVersity Plaza,
Youngstown, Ohio 44555
Received November 11, 2002; E-mail: lowary.2@osu.edu
Abstract: The ever-increasing discovery of biologically important events mediated by carbohydrates has
generated great interest in the synthesis of oligosaccharides and the development of new methods for
glycosidic bond formation. In this paper, we report that 2,3-anhydrofuranose thioglycosides (1, 5) and glycosyl
sulfoxides (2, 6), in which the hydroxyl groups C-2 and C-3 are “protected” as an epoxide, glycosylate
alcohols with an exceptionally high degree of stereocontrol. The predominant or exclusive product of
reactions with this fundamentally new class of glycosylating agent is that in which the newly formed glycosidic
bond is cis to the epoxide moiety. We further demonstrate that subsequent nucleophilic opening of the
epoxide moiety proceeds under basic conditions to give products in high yield and with good to excellent
regioselectivity. The major ring-opened products possess the arabino stereochemistry, and thus this
methodology constitutes a new approach for the synthesis of arabinofuranosides. In the epoxide opening
reactions of glycosides with the 2,3-anhydro-â-D-lyxo stereochemistry (e.g., 73), the addition of (-)-sparteine
(78) to the reaction mixture dramatically enhanced the regioselectivity in favor of the arabino product. This
represents the first example of the use of 78 to influence the regioselectivity of an epoxide ring opening
reaction with a non-carbon nucleophile. We have demonstrated the utility of this methodology through the
efficient synthesis of an arabinofuranosyl hexasaccharide, 7, which is a key structural motif in two
mycobacterial cell wall polysaccharides.
Introduction
methods for the synthesis of these important molecules, as
efficient and stereocontrolled routes to many glycosidic linkages
The diverse roles that oligosaccharides play in a number of
important biological events1 have underscored the importance
of glycosidic bond formation in organic chemistry.2 This field
has received increasing attention in recent years, and a number
of impressive achievements have been reported. Among these
are efficient routes for the synthesis of multimilligram quantities
of large oligosaccharides,3 the development of “one-pot”
protocols for the preparation of oligosaccharides,4 and the report
of the first automated solid-phase oligosaccharide synthesizer.5
However, despite these advances, there remains a need for new
are still not always available. In particular, the stereocontrolled
synthesis of oligosaccharides containing furanose residues is
largely unexplored and has only recently begun to be studied
in earnest.6,7 Although, as would be expected, the synthesis of
furanosides with the 1,2-trans stereochemistry can be achieved
in a straightforward manner through the use of donors with acyl
protecting groups on O-2, the stereoselective preparation of 1,2-
cis furanosides remains a challenging and unsolved problem.6,7
(4) (a) Zhang, Z. Y.; Ollmann, I. R.; Ye, X. S.; Wischnat, R.; Baasov, T.;
Wong, C. H. J. Am. Chem. Soc. 1999, 121, 734. (b) Douglas, N. L.; Ley,
S. V.; Lucking, U.; Warriner, S. L. J. Chem. Soc., Perkin Trans. 1 1998,
51.
† The Ohio State University.
‡ Youngstown State University.
(1) (a) Varki, A. Essent. Glycobiol. 1999, 57. (b) Dwek, R. A. Chem. ReV.
(5) Plante, O. J.; Palmacci, E. R.; Seeberger, P. H. Science 2001, 291, 1523.
(6) Some recent examples: (a) Mereyala, H. B.; Hotha, S.; Gurjar, M. K. Chem.
Commun. 1998, 685. (b) Sanchez, S.; Bamhaoud, T.; Prandi, J. Tetrahedron
Lett. 2000, 41, 7447. (c) Gurjar, M. K.; Reddy, L. K.; Hotha, S. J. Org.
Chem. 2001, 66, 4657. (d) Li, Y.; Singh, G. Tetrahedron Lett. 2001, 42,
6615. (e) Choudhury, A. K.; Roy, N. Carbohydr. Res. 1998, 308, 207. (f)
Pathak, A. K.; El-Kattan, Y. A.; Bansal, N.; Maddry, J. A.; Reynolds, R.
C. Tetrahedron Lett. 1998, 39, 1497. (g) Pathak, A. K.; Pathak, V.; Khare,
N. K.; Maddry, J. A.; Reynolds, R. C. Carbohydr. Lett. 2001, 4, 117. (h)
Sanchez, S.; Bamhaoud, T.; Prandi, J. Eur. J. Org. Chem. 2002, 3864.
(7) (a) Yin, H.; D’Souza, F. W.; Lowary, T. L. J. Org. Chem. 2002, 67, 892.
(b) D’Souza, F. W.; Ayers, J. D.; McCarren, P. R.; Lowary, T. L. J. Am.
Chem. Soc. 2000, 122, 1251. (c) D’Souza, F. W.; Cheshev, P. E.; Ayers,
J. D.; Lowary, T. L. J. Org. Chem. 1998, 63, 9037. (d) Yin, H.; Lowary,
T. L. Tetrahedron Lett. 2001, 42, 5829.
1996, 96, 683.
(2) (a) Davis, B. G. J. Chem. Soc., Perkin Trans. 1 2000, 2137. (b) Boons,
G.-J. Tetrahedron 1996, 52, 1095. (c) Toshima, K.; Tatsuta, K. Chem. ReV.
1993, 93, 1503. (d) Schmidt, R. R.; Kinzy, W., P. J. AdV. Carbohydr. Chem.
Biochem. 1994, 50, 21. (e) Danishefsky, S. J.; Bilodeau, M. T. Angew.
Chem., Int. Ed. Engl. 1996, 35, 1380.
(3) Some recent examples include: (a) Kim, H. M.; Kim, I. J.; Danishefsky,
S. J. J. Am. Chem. Soc. 2001, 123, 35. (b) Aly, M. R. E.; Ibrahim, E.-S. I.;
El-Ashry, E.-S. H. E.; Schmidt, R. R. Eur. J. Org. Chem. 2000, 2, 319. (c)
Mayer, T. G.; Schmidt, R. R. Eur. J. Org. Chem. 1999, 1153. (d) Nicolaou,
K. C.; Watanabe, N.; Li, J.; Pastor, J.; Winssinger, N. Angew. Chem., Int.
Ed. 1998, 37, 1559. (e) Pozsgay, V. J. Am. Chem. Soc. 1995, 117, 6673.
(f) Depre, D.; Duffels, A.; Green, L. G.; Lenz, R.; Ley, S. V.; Wong,
C.-H. Chem. Eur. J. 1999, 5, 3326.
9
10.1021/ja029302m CCC: $25.00 © 2003 American Chemical Society
J. AM. CHEM. SOC. 2003, 125, 4155-4165
4155