LETTER
Asymmetric Hydrogenation of 2-Arylated Cycloalkanones
1385
Katayama, E.; England, A. F.; Ikariya, T.; Noyori, R. Angew.
Chem. Int. Ed. 1998, 37, 1703. (e) Ohkuma, T.; Koizumi,
M.; Doucet, H.; Pham, T.; Kozawa, M.; Murata, K.;
Katayama, E.; Yokozawa, T.; Ikariya, T.; Noyori, R. J. Am.
Chem. Soc. 1998, 120, 13529. (f) Ohkuma, T.; Koizumi,
M.; Ikehira, H.; Yokozawa, T.; Noyori, R. Org. Lett. 2000,
2, 659. (g) Ohkuma, T.; Koizumi, M.; Yoshida, M.; Noyori,
R. Org. Lett. 2000, 2, 1749. (h) Ohkuma, T.; Takeno, H.;
Honda, Y.; Noyori, R. Adv. Synth. Catal. 2001, 343, 369.
(5) Ohkuma, T.; Ooka, H.; Yamakawa, M.; Ikariya, T.; Noyori,
R. J. Org. Chem. 1996, 61, 4872.
O
OH
3
2
N
N
1
9
10
(6) Matsumoto, T.; Murayama, T.; Mitsuhashi, S.; Miura, T.
Tetrahedron Lett. 1999, 40, 5043.
OCH3
OCH3
(7) Ohkuma, T.; Ishii, D.; Takeno, H.; Noyori, R. J. Am. Chem.
Soc. 2000, 122, 6510.
O
OH
4
(8) For the kinetic resolution of racemic ketones with RuH(h1-
BH4)(binap)(dpen) under base-free conditions, see:
Ohkuma, T.; Koizumi, M.; Muñiz, K.; Hilt, G.; Kabuto, C.;
Noyori, R. J. Am. Chem. Soc. 2002, 124, 6508.
3
1
N
N
(9) For the mechanism of asymmetric hydrogenation of simple
ketones with the BINAP–DPEN–Ru(II) catalyst, see:
Sandoval, C. A.; Ohkuma, T.; Muñiz, K.; Noyori, R. J. Am.
Chem. Soc. 2003, 125, 13490.
(10) See for example: (a) Brown, H. C.; Krishnamurthy, S.
Tetrahedron 1979, 35, 567. (b) Greeves, N. In
n-C3H7
n-C3H7
11
12
Figure 1
Thus, the asymmetric hydrogenation of racemic 2-arylcy-
cloalkanones through dynamic kinetic resolution, when
coupled with previous methods, provides a practical tool
for the synthesis of cis-2-subsitituted cycloalkanols and
aza-analogues of high enantiomeric purity, which are oth-
erwise difficult to prepare. The optimum conditions are
obtained by the careful selection of structural parameters
in the BINAP–diamine Ru catalysts. The reaction is
achievable with low catalyst loading (ketone:Ru ratio of
up to 100,000:1) and under relatively low hydrogen pres-
sure (8 atm) at room temperature.
Comprehensive Organic Synthesis, Vol. 8; Trost, B. M.;
Fleming, I., Eds.; Pergamon: Oxford, 1991, 1. (c) Davis, A.
P. In Houben-Weyl, 4th ed., Vol. E21d; Helmchen, G.;
Hoffmann, R. W.; Mulzer, J.; Schaumann, E., Eds.; Thieme:
Stuttgart, 1995, 4025.
(11) Experimental Procedure of the Hydrogenation of 2a with
Ketone:Ru = 100,000:1.
Solid (R,RR)-7a (0.5 mg, 0.47 mmol), t-C4H9OK (180 mg,
1.73 mmol), and 2a (9.12 g, 51.2 mmol) were placed in a 500
mL glass autoclave equipped with a Teflon-coated magnetic
stirring bar. Air present in the autoclave was replaced by
argon. 2-Propanol (100 mL), which had been degassed by
three freeze-thaw cycles, was added to the autoclave. The
vessel was pressurized to 8 atm of hydrogen. The reaction
mixture was vigorously stirred at 25 °C for 48 h, during
which time the hydrogen cylinder was kept connected. After
carefully venting the hydrogen gas in the apparatus, the
solvent was removed under reduced pressure. The yield
determined by GC was 100%. Subsequently, the residue was
passed through a silica gel pad, eluted with a 1:4 EtOAc–
hexane mixture giving (1S,2S)-5a (8.61 g, 93% yield,
cis:trans = 100:0, 99.6% ee), [a]D23 +103.6 (c 2.02, CH3OH)
{lit. [a]D27 –106 (c 0.20, CH3OH)}, 1R,2R-Isomer: Verbit,
L.; Price, H. C. J. Am. Chem. Soc. 1972, 94, 5143.
(12) The absolute configuration of (1S,2S)-5b,c,e, and -6a, as
well as (3S,4R)-12 was estimated according to the literature:
Matsugi, M.; Itoh, K.; Nojima, M.; Hagimoto, Y.; Kita, Y.
Tetrahedron Lett. 2001, 42, 6903. The cis alcohols were
converted to the trans-(1R,2S) alcohols by stereoinversion of
the hydroxyl-containing carbon, followed by acylation with
3b-acetoxy-D5-etiocholenic acid chloride. The 1H NMR
chemical shift at C(18)-CH3 of the chiral auxiliary was
higher than that derived from the 1S,2R-enantiomer.
(13) Lee, J.; Askin, D.; Hoang, T. US Pat. Appl. 20020019532,
2002.
Acknowledgment
This work was financially supported by grants-in-aid from the Ja-
pan Society for the Promotion of Science (JSPS) (Nos. 14GS0214
and 15350079).
References
(1) Noyori, R.; Tokunaga, M.; Kitamura, M. Bull. Chem. Soc.
Jpn. 1995, 68, 36.
(2) For the first example, see: Noyori, R.; Ikeda, T.; Ohkuma,
T.; Widhalm, M.; Kitamura, M.; Takaya, H.; Akutagawa, S.;
Sayo, N.; Saito, T.; Taketomi, T.; Kumobayashi, H. J. Am.
Chem. Soc. 1989, 111, 9134.
(3) (a) Noyori, R.; Ohkuma, T. Angew. Chem. Int. Ed. 2001, 40,
40. (b) BINAP = 2,2¢-bis(diphenylphosphino)-1,1¢-
binaphthyl. TolBINAP = 2,2¢-bis(di-4-tolylphosphino)-1,1¢-
binaphthyl. XylBINAP = 2,2¢-bis(di-3,5-xylylphosphino)-
1,1¢-binaphthyl. DAIPEN = 1,1-di(4-anisyl)-2-isopropyl-
1,2-ethylenediamine. DPEN = 1,2-diphenylethylene
diamine.
(4) (a) Ohkuma, T.; Ooka, H.; Hashiguchi, S.; Ikariya, T.;
Noyori, R. J. Am. Chem. Soc. 1995, 117, 2675.
(b) Ohkuma, T.; Ooka, H.; Ikariya, T.; Noyori, R. J. Am.
Chem. Soc. 1995, 117, 10417. (c) Ohkuma, T.; Ikehira, H.;
Ikariya, T.; Noyori, R. Synlett 1997, 467. (d) Doucet, H.;
Ohkuma, T.; Murata, K.; Yokozawa, T.; Kozawa, M.;
(14) Absolute configuration of (2S,3S)-10 was determined after
removal of the N-benzyl group by hydrogenolysis.15
(15) (a) Harrison, T.; Williams, B. J.; Swain, C. J.; Ball, R. G.
Bioorg. Med. Chem. Lett. 1994, 4, 2545. (b) Stadler, H.;
Bös, M. Heterocycles 1999, 51, 1067.
Synlett 2004, No. 8, 1383–1386 © Thieme Stuttgart · New York