1858
A. Yanagisawa et al.
LETTER
(3) Recent reports using silyl enol ethers, ketene silyl acetals or
other enolic species: (a) Hénin, F.; Létinois, S.; Muzart, J.
Tetrahedron: Asymmetry 2000, 11, 2037. (b) Nakamura, S.;
Kaneeda, M.; Ishihara, K.; Yamamoto, H. J. Am. Chem. Soc.
2000, 122, 8120. (c) Matsukawa, S.; Imamoto, T. J. Am.
Chem. Soc. 2000, 122, 12659. (d) Roy, O.; Diekmann, M.;
Riahi, A.; Hénin, F.; Muzart, J. Chem. Commun. 2001, 533.
(4) For enantioselective protonations of metal enolates of -
amino acid derivatives, see: (a) Duhamel, L.; Plaquevent, J.-
C. J. Am. Chem. Soc. 1978, 100, 7415. (b) Duhamel, L.;
Plaquevent, J.-C. Tetrahedron Lett. 1980, 21, 2521.
(c) Duhamel, L.; Plaquevent, J.-C. Bull. Soc. Chim. Fr. 1982,
II, 75. (d) Duhamel, L.; Fouquay, S.; Plaquevent, J.-C.
Tetrahedron Lett. 1986, 27, 4975. (e) Duhamel, L.;
Duhamel, P.; Fouquay, S.; Eddine, J. J.; Peschard, O.;
Plaquevent, J.-C.; Ravard, A.; Solliard, R.; Valnot, J.-Y.;
Vincens, H. Tetrahedron 1988, 44, 5495. (f) Vedejs, E.;
Lee, N. J. Am. Chem. Soc. 1995, 117, 891. (g) Martin, J.;
Lasne, M.-C.; Plaquevent, J.-C.; Duhamel, L. Tetrahedron
Lett. 1997, 38, 7181. (h) Vedejs, E.; Kruger, A. W.; Suna, E.
J. Org. Chem. 1999, 64, 7863. (i) Calmès, M.; Glot, C.;
Martinez, J. Tetrahedron: Asymmetry 2001, 12, 49.
(5) (a) Yanagisawa, A.; Kuribayashi, T.; Kikuchi, T.;
Yamamoto, H. Angew. Chem., Int. Ed. Engl. 1994, 33, 107.
(b) Yanagisawa, A.; Kikuchi, T.; Watanabe, T.;
R1
R1
R1
CO2H
N
CO2H
R2
R3
Ph
Ph
N
O
R1
O
R4
R5
10, R1 = Cl; R2 = R4 = H; R3 = R5 = Ph
13
11, R1 = H; R2 = R4 = 2-MeC6H4; R3 = R5 = H
12, R1 = H; R2 = R4 = 3,5-tBu2C6H3; R3 = R5 = H
Figure 2
(11) Spectral data of one diastereomer of 18 (less polar isomer):
TLC Rf = 0.14 (1:2 ether/hexane); IR (CHCl3): 3900–3150,
3013, 2975, 1690, 1509, 1472, 1397, 1225 cm–1; 1H NMR
(300 MHz, CDCl3): = 0.86 (s, 9 H, 3 CH3), 4.00 (s, 1 H,
OH), 4.95–4.97 (m, 3 H, 3 CH), 7.13–7.49 (m, 13 H,
aromatic), 7.93 (m, 1 H, aromatic); 13C NMR (75 MHz,
CDCl3): = 25.2 (3 C), 35.9, 67.6, 78.4, 91.0, 122.7, 123.4,
126.7 (2 C), 127.1, 127.8 (4 C), 127.9 (3 C), 128.5, 131.0,
131.6, 142.0, 142.1, 144.7, 161.4; [ ]30D –85.4 (c 1.0,
CHCl3).
(12) Spectral data of 19a: TLC Rf = 0.43(ether); IR (CHCl3):
3700–3200, 3019, 2982, 1653, 1497, 1456, 1374, 1215
cm–1; 1H NMR (300 MHz, CDCl3): = 1.38 (s, 3 H, CH3),
1.42 (s, 3 H, CH3), 2.05 (m, 2 H, CH2), 2.41 (m, 2 H, CH2),
3.71 (s, 1 H, OH), 4.04 (dd, 1 H, J = 6.9, 13.5 Hz, one proton
of CH2), 4.14 (dd, 1 H, J = 7.2, 14.4 Hz, one proton of CH2),
5.10 (d, 1 H, J = 7.8 Hz, CH), 5.26 (d, 1 H, J = 8.1 Hz, CH),
7.20–7.40 (m, 10 H, aromatic); 13C NMR (75 MHz, CDCl3):
= 25.2, 25.3, 26.2, 32.2, 70.1, 73.6, 78.2, 88.2, 89.2, 125.8
(2 C), 126.5 (2 C), 127.8, 128.5, 128.8 (2 C), 128.9 (2 C),
139.9, 141.6, 170.1; [ ]30D +40.2 (c 1.0, CHCl3).
(13) Spectral data of 19b: TLC Rf = 0.53(ether); IR (CHCl3):
3650–3200, 3017, 2982, 1649, 1495, 1456, 1374, 1215
cm–1; 1H NMR (300 MHz, CDCl3): = 1.37 (s, 3 H, CH3),
1.46 (s, 3 H, CH3), 2.05 (m, 2 H, CH2), 2.40 (m, 2 H, CH2),
3.81 (s, 1 H, OH), 4.09 (m, 2 H, CH2), 5.13 (d, 1 H, J = 8.7
Hz, CH), 5.28 (d, 1 H, J = 8.4 Hz, CH), 7.21–7.41 (m, 10 H,
aromatic); 13C NMR (75 MHz, CDCl3): = 25.0, 25.3, 26.2,
32.2, 70.1, 73.5, 78.4, 88.1, 89.2, 126.0 (2 C), 126.5 (2 C),
127.8, 128.6, 128.8 (2 C), 129.0 (2 C), 139.9, 141.5, 170.1;
[ ]30D +108.9 (c 1.0, CHCl3).
Kuribayashi, T.; Yamamoto, H. Synlett 1995, 372.
(c) Yanagisawa, A.; Ishihara, K.; Yamamoto, H. Synlett
1997, 411. (d) Yanagisawa, A.; Kikuchi, T.; Yamamoto, H.
Synlett 1998, 174. (e) Yanagisawa, A.; Kikuchi, T.;
Kuribayashi, T.; Yamamoto, H. Tetrahedron 1998, 54,
10253. (f) Yanagisawa, A.; Watanabe, T.; Kikuchi, T.;
Yamamoto, H. J. Org. Chem. 2000, 65, 2979.
(6) (a) McMurry, J. E. Org. React. 1976, 24, 187. (b) Magnus,
P.; Gallagher, T. J. Chem. Soc., Chem. Commun. 1984, 389.
(7) Spectral data of 4: TLC Rf = 0.05 (1:2 ethyl acetate/hexane);
IR (KBr): 3200–2250, 3040, 1709, 1653, 1495, 1456, 1283
cm–1; 1H NMR (300 MHz, CDCl3): = 5.46 (d, 1 H, J = 8.1
Hz, CH), 5.58 (d, 1 H, J = 8.4 Hz, CH), 7.24–7.68 (m, 10 H,
aromatic), 7.67 (dt, 1 H, J = 1.5, 7.5 Hz, aromatic), 7.76 (dt,
1 H, J = 1.5, 7.5 Hz, aromatic), 8.24 (dd, 1 H, J = 1.5, 7.5 Hz,
aromatic), 8.67 (dt, 1 H, J = 1.2, 7.5 Hz, aromatic); 13C NMR
(75 MHz, CDCl3): = 76.3, 77.7, 89.9, 123.4, 126.0 (2 C),
126.3 (2 C), 128.6, 129.2 (2 C), 129.3 (2 C), 129.4, 131.0,
132.0, 133.1, 135.6, 137.9, 139.1, 166.8 (2 C); [ ]23D +70.7
(c 1.0, CHCl3).
(8) D2O was added as a quencher to determine a percentage of
the unreacted enolate 3. As for an experimental procedure
for the D2O quench, see the representative experimental
procedure in the text.
(9) Corrected value based on the percentage of the protonated
product. The details of the protonation are as follows: 13%
observed ee; 54% enolization; 44% protonation by 4; 10%
deuteration in quench.
(14) Beck, A. K.; Hoekstra, M. S.; Seebach, D. Tetrahedron Lett.
1977, 1187.
(15) Spectral data of 2:16 TLC Rf = 0.30 (1:2 ether/hexane);
IR(neat): 2990, 2950, 1742, 1624, 1599, 1578, 1491, 1447,
1287, 1206 cm–1; 1H NMR (300 MHz, CDCl3): = 1.42 (d,
3 H, J = 6.9 Hz, CH3), 3.72 (s, 3 H, CH3), 4.18 (q, 1 H,
J = 6.9 Hz, CH), 7.17–7.21 (m, 2 H, aromatic), 7.30–7.49
(m, 6 H, aromatic), 7.62–7.66 (m, 2 H, aromatic); 13C NMR
(75 MHz, CDCl3): = 19.2, 52.1, 60.6, 127.6 (2 C), 128.0 (2
C), 128.6 (3 C), 128.7 (2 C), 130.3, 136.2, 139.4, 169.7,
173.4. Observed [ ]D value of (R)-2 (42% ee) obtained in the
protonation with 19b: [ ]28D +24.8 (c 1.0, CHCl3).
(16) Polt, R.; Peterson, M. A.; DeYoung, L. J. Org. Chem. 1992,
57, 5469.
(10) We studied the enantioselectivity of the protonation of other
chiral benzoic acids 10–13 derived from various amino
alcohols and diacids, however, no results better than those
with acid 4 were obtained (Figure 2).
Synlett 2001, No. 12, 1855–1858 ISSN 0936-5214 © Thieme Stuttgart · New York