Page 5 of 6
Journal of the American Chemical Society
(6) Ooi, T.; Ohara, D.; Tamura, M.; Maruoka, K. J. Am. Chem. Soc.
2004, 126, 6844-6845.
(7) Uyanik, M.; Okamoto, H.; Yasui, T.; Ishihara, K. Science 2010,
328, 1376-1379.
(8) Uyanik, M.; Hayashi, H.; Ishihara, K. Science 2014, 345, 291-
294.
chiral bisguanidinium dication is much better in stabilizing the
1
2
3
4
active anionic intermediates than tetrabutylammonium cation.
This might be partially ascribed to its dicationic character,
which forms stronger electrostatic interaction with enolate
anion in the transition states.
5
6
7
8
(9) Mayer, S.; List, B. Angew. Chem. Int. Ed. 2006, 45, 4193-4195.
(10) Rauniyar, V.; Lackner, A. D.; Hamilton, G. L.; Toste, F. D.
Science 2011, 334, 1681-1684.
(11) Phipps, R. J.; Hamilton, G. L.; Toste, F. D. Nat. Chem. 2012,
4, 603-614.
(12) Mahlau, M.; List, B. Angew. Chem. Int. Ed. 2013, 52, 518-533.
(13) Xu, H.; Zuend, S. J.; Woll, M. G.; Tao, Y.; Jacobsen, E. N.
Science 2010, 327, 986-990.
(14) Brak, K.; Jacobsen, E. N. Angew. Chem. Int. Ed. 2013, 52,
534-561.
(15) Llewellyn, D. B.; Adamson, D.; Arndtsen, B. A. Org. Lett.
2000, 2, 4165-4168.
(16) Mukherjee, S.; List, B. J. Am. Chem. Soc. 2007, 129, 11336-
11337.
(17) Hamilton, G. L.; Kang, E. J.; Mba, M.; Toste, F. D. Science
2007, 317, 496-499.
(18) Hatano, M.; Moriyama, K.; Maki, T.; Ishihara, K. Angew.
Chem. Int. Ed. 2010, 49, 3823-3826.
(19) Ohmatsu, K.; Ito, M.; Kunieda, T.; Ooi, T. Nat. Chem. 2012, 4,
473-477.
(20) Chen, G.; Deng, Y.; Gong, L.; Mi, A.; Cui, X.; Jiang, Y.; Choi,
M. C. K.; Chan, A. S. C. Tetrahedron: Asymmetry 2001, 12, 1567-
1571.
(21) Nakoji, M.; Kanayama, T.; Okino, T.; Takemoto, Y. Org. Lett.
2001, 3, 3329-3331.
(22) Han, Z.-Y.; Wang, C.; Gong, L.-Z. In Science of Synthesis:
Asymmetric Organocatalysis; Maruoka,K., Ed.; Georg Thieme Verlag:
Stuttgart, 2012; Vol. 2, p 697-740.
(23) Shao, Z.; Zhang, H. Chem. Soc. Rev. 2009, 38, 2745-2755.
(24) Zhong, C.; Shi, X. Eur. J. Org. Chem. 2010, 2999-3025.
(25) Rueping, M.; Koenigs, R. M.; Atodiresei, I. Chem. Eur. J.
2010, 16, 9350-9365.
(26) Alper, H.; Eisenstat, A.; Satyanarayana, N. J. Am. Chem. Soc.
1990, 112, 7060-7061.
(27) Griffith, W. P.; Ley, S. V.; Whitcombe, G. P.; White, A. D. J.
Chem. Soc., Chem. Commun. 1987, 1625-1627.
(28) Bhunnoo, R. A.; Hu, Y.; Lainé, D. I.; Brown, R. C. D. Angew.
Chem. Int. Ed. 2002, 41, 3479-3480.
(29) Ma, T.; Fu, X.; Kee, C. W.; Zong, L.; Pan, Y.; Huang, K.-W.;
Tan, C.-H. J. Am. Chem. Soc. 2011, 133, 2828-2831.
(30) Zong, L.; Ban, X.; Kee, C. W.; Tan, C.-H. Angew. Chem. Int.
Ed. 2014, 53, 11849-11853.
CONCLUSIONS
It is generally explained that phase-transfer catalysts accel-
erate reactions by enhancing organic solubility and nucleo-
philicity of the anionic reagents2. In this newly developed
methodology, strong evidence suggests that rate acceleration is
mainly attributed to transition state stabilization through at-
tractive cation-anion interaction. This stereoselective rate ac-
celeration makes the desired asymmetric pathway much fa-
vored. Charge-acceleration effect has been previously pro-
posed in quaternary Cinchonidinium-catalyzed epoxidation
reaction41. More recently, Jacobsen demonstrated that transi-
tion state charge stabilization strategy through multiple non-
covalent interactions could be utilized in chiral anion-bonding
catalysis to induce stereoselectivity42. Although the type of
non-covalent interactions involved in this methodology re-
mains to be elucidated, the enzyme-like mode of bisguanidini-
um, with active center deeply buried in a chiral pocket, should
provide implications for catalyst design. A similar approach
has already been utilized by List with imidodiphosphoric acid,
which contains anionic sites buried within hydrophobic
groups43.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
In addition, the disclosure of asymmetric permanganate oxi-
dation reaction together with mechanistic insights should pro-
vide inspiration for expansion to other anionic metal salts.
Given the frequent occurrence of transition metal-centered
anions in coordination complexes, the current chiral cation
ion-pairing strategy would open up new paradigms for asym-
metric transition metal catalysis.
ASSOCIATED CONTENT
Supporting Information.
Experimental details and characterization data. The Supporting
Information is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
(31) Jacobsen, E. N.; Marko, I.; Mungall, W. S.; Schroeder, G.;
Sharpless, K. B. J. Am. Chem. Soc. 1988, 110, 1968-1970.
(32) Sharpless, K. B.; Amberg, W.; Bennani, Y. L.; Crispino, G. A.;
Hartung, J.; Jeong, K. S.; Kwong, H. L.; Morikawa, K.; Wang, Z. M.
J. Org. Chem. 1992, 57, 2768-2771.
(33) Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem.
Rev. 1994, 94, 2483-2547.
(34) Fatiadi, A. J. Synthesis 1987, 85-127.
*choonhong@ntu.edu.sg
*Wang_Chao@ntu.edu.sg
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
We gratefully acknowledge Nanyang Technological University
(M4080946.110, M4011372.110) for financial support.
(35) Dash, S.; Patel, S.; Mishra, B. K. Tetrahedron 2009, 65, 707-
739.
(36) Srinivasan, N. S.; Lee, D. G. Synthesis 1979, 520-521.
(37) Crout, D. H. G.; Rathbone, D. L. Synthesis 1989, 40-42.
(38) Lee, D. G. In PATAI'S Chemistry of Functional Groups;
Rapport, Z. Ed.; John Wiley & Sons, Ltd: 2009; p 419-488.
(39) Jew, S.-s.; Lee, J.-H.; Jeong, B.-S.; Yoo, M.-S.; Kim, M.-J.;
Lee, Y.-J.; Lee, J.; Choi, S.-h.; Lee, K.; Lah, M. S.; Park, H.-g. Angew.
Chem. Int. Ed. 2005, 44, 1383-1385.
(40) Lee, D. G.; Brown, K. C. J. Am. Chem. Soc. 1982, 104, 5076-
5081.
(41) Corey, E. J.; Zhang, F.-Y. Org. Lett. 1999, 1, 1287-1290.
(42) Knowles, R. R.; Jacobsen, E. N. Proc. Natl. Acad. Sci. U. S. A.
2010, 107, 20678-20685.
REFERENCES
(1) Walsh, P. J.; Kozlowski, M. C. Fundamentals of Asymmetric
Catalysis; University Science Books, 2009.
(2) Maruoka, K. Asymmetric Phase Transfer Catalysis; Wiley,
2008.
(3) Ooi, T.; Maruoka, K. Angew. Chem. Int. Ed. 2007, 46, 4222-
4266.
(4) Shirakawa, S.; Maruoka, K. Angew. Chem. Int. Ed. 2013, 52,
4312-4348.
(5) Ooi, T.; Uematsu, Y.; Maruoka, K. J. Am. Chem. Soc. 2006,
128, 2548-2549.
(43) Coric, I.; List, B. Nature 2012, 483, 315-319.
ACS Paragon Plus Environment