F
M. T. Corbett, S. Caille
Letter
Synlett
high levels of functional-group tolerance and chemoselec-
tivity. Further applications of Vilsmeier reagents for in situ
activation of alcohols are also currently being explored.
(12) (a) Barrett, A. G. M.; Braddock, D. C.; James, R. A.; Koike, N.;
Procopiou, P. A. J. Org. Chem. 1998, 63, 6273. (b) Rao, M.; Yang,
M.; Kuehner, D.; Grosso, J.; Deshpande, R. P. Org. Process Res.
Dev. 2003, 7, 547. (c) Caille, S.; Cui, S.; Hwang, T.-L.; Wang, X.;
Faul, M. M. J. Org. Chem. 2009, 74, 3833.
(13) (a) Hafner, K.; Vöpel, K. H.; Ploss, G.; König, C. Justus Liebigs Ann.
Chem. 1963, 661, 52. (b) Bredereck, H.; Effenberger, F.; Simchen,
G. Chem. Ber. 1963, 96, 1350.
Acknowledgment
The authors thank Tawnya Flick for assistance in obtaining HRMS data.
(14) Li, B. L.; Ding, S. Y.; Ren, Y. F.; Wang, L. C.; Jia, Y. C.; Zhang, X. Q.;
Gu, H. M. Bull. Korean Chem. Soc. 2013, 34, 1537.
(15) Kantlehner, W.; Funke, B. Chem. Ber. 1971, 104, 3711.
(16) (a) Kantlehner, W.; Gutbrod, H.-D.; Groß, P. Liebigs Ann. Chem.
1979, 522. (b) Kantlehner, W.; Gutbrod, H.-D. Liebigs Ann. Chem.
1979, 1362.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortioInfgrmoaitn
S
u
p
p
ortiInfogrmoaitn
(17) (a) Wasserman, H. H.; Ives, J. L. J. Org. Chem. 1985, 50, 3573.
(b) Jarrahpour, A.; Zarei, M. Tetrahedron 2010, 66, 5017. (c) Rai,
A.; Rai, V. K.; Singh, A. K.; Yadav, L. D. S. Eur. J. Org. Chem. 2011,
4302. (d) Yao, B.; Shen, C.; Liang, Z.; Zhang, Y. J. Org. Chem. 2014,
79, 936.
(18) Hafner, K.; Vöpel, K. H.; Ploss, G.; König, C. Org. Synth. 1967, 47,
52.
(19) (a) Klayman, D. L.; Woods, T. S. J. Org. Chem. 1975, 40, 2000.
(b) Kim, T. H.; Cha, M.-H. Tetrahedron Lett. 1999, 40, 3125.
(c) Kim, T. H.; Min, J. K.; Lee, G.-J. Tetrahedron Lett. 1999, 40,
8201.
(20) (a) Gaumont, A.-C.; Gulea, M.; Levillain, J. Chem. Rev. 2009, 109,
1371. (b) Just-Baringo, X.; Albericio, F.; Alvarez, M. Curr. Top.
Med. Chem. 2014, 14, 1244.
(21) At elevated reaction temperatures, the decomposition of 3 in
the presence of NaOAc is a competing pathway leading to the
generation of MeOAc. This deleterious pathway can be circum-
vented through the use of iPr2NEt. At ambient temperature, the
background reaction of 3 and NaOAc is nonconsequential under
the time scale of the reaction.
References and Notes
(1) (a) But, T. Y. S.; Toy, P. H. Chem. Asian J. 2007, 2, 1340.
(b) Liégault, B.; Renaud, J.-L.; Bruneau, C. Chem. Soc. Rev. 2008,
37, 290. (c) Swamy, K. C. K.; Kumar, N. N. B.; Balaraman, E.;
Kumar, K. V. P. P. Chem. Rev. 2009, 109, 2551. (d) Trost, B. M. Tet-
rahedron 2015, 71, 5708. (e) Butt, N. A.; Zhang, W. Chem. Soc.
Rev. 2015, 44, 7929.
(2) Henkel, T.; Brunne, R. M.; Müller, H.; Reichel, F. Angew. Chem.
Int. Ed. 1999, 38, 643.
(3) (a) Stirling, C. J. M. Acc. Chem. Res. 1979, 12, 198. (b) Jaramillo,
P.; Domingo, L. R.; Pérez, P. Chem. Phys. Lett. 2006, 420, 95.
(c) Spahlinger, G.; Jackson, J. E. Phys. Chem. Chem. Phys. 2014,
16, 24559.
(4) (a) Clarke, P. A.; Santos, S.; Martin, W. H. C. Green Chem. 2007, 9,
438. (b) Grondal, C.; Jeanty, M.; Enders, D. Nat. Chem. 2010, 2,
167. (c) Gaich, T.; Baran, P. S. J. Org. Chem. 2010, 75, 4657.
(d) Dach, R.; Song, J. J.; Roschangar, F.; Samstag, W.; Senanayake,
C. H. Org. Process Res. Dev. 2012, 16, 1697.
(5) (a) Hirose, D.; Taniguchi, T.; Ishibashi, H. Angew. Chem. Int. Ed.
2013, 52, 4613. (b) Fletcher, S. Org. Chem. Front. 2015, 2, 739.
(c) Buonomo, J. A.; Aldrich, C. C. Angew. Chem. Int. Ed. 2015, 54,
13041. (d) Hirose, D.; Gazvoda, M.; Košmrlj, J.; Tamiguchi, T. Org.
Lett. 2016, 18, 4036.
(6) (a) Bernacki, A. L.; Zhu, L.; Hennings, D. D. Org. Lett. 2010, 12,
5526. (b) Trader, D. J.; Carlson, E. E. Mol. BioSyst. 2012, 8, 2484.
(7) (a) Nawrat, C. C.; Jamison, C. R.; Slutskyy, Y.; MacMillan, D. W.
C.; Overman, L. E. J. Am. Chem. Soc. 2015, 137, 11270. (b) Zhang,
X.; MacMillan, D. W. C. J. Am. Chem. Soc. 2016, 138, 13862.
(8) (a) Seybold, G. J. Prakt. Chem. 1996, 338, 392. (b) Jones, G.;
Stanforth, S. P. Org. React. 1997, 49, 1. (c) Jones, G.; Stanforth, S.
P. Org. React. 2000, 56, 355.
(9) Mayr, H.; Ofial, A. R. Tetrahedron Lett. 1997, 38, 3503.
(10) (a) Hanessian, S.; Plessas, N. R. Chem. Commun. 1967, 1152.
(b) Dods, R. F.; Roth, J. S. Tetrahedron Lett. 1969, 10, 165.
(c) Hanessian, S.; Plessas, N. R. J. Org. Chem. 1969, 34, 2163.
(d) Benazza, M.; Uzan, R.; Beaupère, D.; Demailly, G. Tetrahedron
Lett. 1992, 33, 4901.
(22) Representative Procedure for the Preparation of 2-Amino-2-
thiazoline 6
To a stirred solution of ethanolamine 5a (1.35 mL, 22.4 mmol,
1.10 equiv) in DMF (40.0 mL, 0.5 M) at r.t. was added phenyl iso-
thiocyanate 4a (2.40 mL, 20.0 mmol, 1.00 equiv). After stirring
for 2 min at r.t., Vilsmeier salt 3 (7.20 g, 30.0 mmol, 1.50 equiv),
and NaOAc (2.51 g, 30.6 mmol, 1.50 equiv) were added sequen-
tially. The reaction mixture was allowed to stir at r.t. until
adjudged complete by TLC, generally 4 h. The reaction was
diluted with EtOAc (120 mL) and sequentially washed with sat.
aq NaHCO3 (40 mL) and brine (40 mL). The organic layer was
dried over MgSO4, polish filtered, and concentrated under
reduced pressure. The crude residue was purified by silica gel
column chromatography (100% heptane to 80% EtOAc in
heptane gradient) to give 6a (3.31 g, 18.6 mmol, 93% yield) as a
white solid (mp 153 °C).
Analytical Data for 6a
1H NMR (400 MHz, CDCl3): δ = 7.31–7.24 (m, 2 H), 7.16–7.08 (m,
2 H), 7.04–7.01 (m, 1 H), 6.36 (br s, 1 H), 3.78 (t, J = 7.04 Hz, 2 H),
3.27 (t, J = 7.04 Hz, 2 H). 13C NMR (101 MHz, CDCl3): δ = 161.83,
147.59, 128.89, 123.10, 121.12, 50.44, 31.81. ESI-HRMS: m/z
calcd for C9H11N2S [M + H]+: 179.06349; found: 179.06375. TLC
(EtOAc/heptane, 1:1): Rf = 0.22. The spectral properties are in
agreement with those previously reported in the literature.6a
(23) See Supporting Information for further information.
(24) Evindar, G.; Batey, R. A. Org. Lett. 2003, 5, 133.
(11) Morita, K.; Noguchi, S.; Nishikawa, M. Chem. Pharm Bull. 1959,
7, 896.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–F