4620
F. Vergne et al. / Bioorg. Med. Chem. Lett. 14 (2004) 4615–4621
and also 16. This result reflects the benefit of amide
modifications to optimize the pharmacokinetic profiles
of thiadiazole derivatives. However, as mentioned in
the preceding publication,10 the loss of HBD properties
(18) caused a decrease in inhibitory activity. Compound
19 was then designed to assess the importance of the
combination of a novel hindered amide function (with
HBD property) with the hydroxy cyclohexyl ring on
the rate of metabolism. As expected, this modification
resulted in a more pronounced reduction in clearance
(86%) compared to 16 (67%), 17 (58%) and 18 (75%).
This result confirmed the choice of a combined ap-
proach. However, the moderate volume of distribution
for 19 resulted in a short half-life (t1/2 =0.46h). Interest-
ingly, the equivalent inhibitory activity displayed by 19
compared to 18, suggested that steric bulk at the prox-
imity of the amide H atom, is also detrimental to the
HBD property and consequently to potency. It is worth
noting that compounds 20 and 21 (21a) offered the
appropriate structural combination resulting in a signif-
icant improvement of pharmacokinetic profiles com-
pared to the starting point 1. In addition, replacing the
racemic form 21 by the enantiomer 21a proved to be
favourable for inhibitory activity (6-fold increase to
reach 52nM).
and the Evotec OAI scientists for their assistance in this
project. We also thank Angus Nedderman and Michael
Ritzau (PGRD, Sandwich) for their assistance in this
project.
References and notes
1. (a) Francis, S. H.; Turko, I. V.; Corbin, J. D. Prog. Nucleic
Acid Res. Mol. Biol. 2001, 65, 1–52; (b) Conti, M. In
Principles of Molecular Regulation; Conn, P. M., Means,
A. R., Eds.; Humana, 2000; pp 261–275; (c) Soderling,
S. H., J. A.; Beavo, J. A. Current Opinion in Cell Biology
2000, 12, 174–179.
2. (a) Conti, M.; Jin, S. L. C. Prog. Nucleic Acid Res. Mol.
Biol. 1999, 63, 1–38; (b) Essayan, D. M. J. Allergy Clin.
Immunol. 2001, 108, 671–680.
3. (a) Li, L.; Yee, C.; Beavo, J. A. Science 1999, 283,
848–851; (b) Nakata, A.; Ogawa, T.; Sasaki, T.; Koyama,
N.; Wada, K.; Kotera, J.; Kikkawa, H.; Omori, K.;
Kaminuma, O. Clin. Exp. Immunol. 2002, 128, 460–466.
4. Smith, S. J.; Brookes-Fazakerley, S.; Donnelly, L. E.;
Barnes, P. J.; Barnette, M. S.; Giembycz, M. A. Am. J.
Physiol. Lung Cell. Mol. Physiol. 2003, 284, L279–L289.
5. (a) Perez-Torres, S.; Cortes, R.; Tolnay, M.; Probst, A.;
Palacios, J. M.; Mengod, G. Exp. Neurol. 2003, 182,
322–334; (b) Miro, X.; Perez-Torres, S.; Palacios, J. M.;
Puigdomenech, P.; Mengod, G. Synapse 2001, 40,
201–214; (c) Sasaki, T.; Kotera, J.; Omori, K. Biochem.
J. 2002, 361, 211–220.
Compound 18 exhibited the higher Vd in contrast to
some of the neutral compounds 16, 19–21 and (21a).
This is probably due to the basic property of the 4-meth-
ylpiperazine moiety, suggesting that the half-lives could
be again optimized by incorporation of basic functions
into the molecules. As anticipated, the Vd of neutral
hydroxy compounds such as 16, and 20 are lower com-
pared, respectively, to 1 and 17 most probably reflecting
a reduced lipophilicity (presence of polar functions)
compared to compounds 1 and 17. As expected, this
effect is even more pronounced with 19 or 21 (21a).
These results are in agreement with the overall trend
for neutral compounds to display increased Vd with
higher logD,14 with the risk also to increase the suscep-
tibility to hepatic clearance as observed with 1 and 17.
The compounds 20–21 and 21a displayed very high bio-
availabilities (76–100%) with acceptable half-lives
(t1/2 > 2h) resulting not only from optimized low clear-
ances but also due to the enhanced solubilities
(>135lg/mL) and to high permeabilities confirmed by
measures across Caco-2 cells (Papp >30·10À6 cm/s).
6. Lee, R.; Wolda, S.; Moon, E.; Esselstyn, J.; Hertel, C.;
Lerner, A. Cell. Signalling 2002, 14, 277–284.
7. (a) Hetman, J. M.; Soderling, S. H.; Glavas, N. A.; Beavo,
J. A. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 472–476; (b)
Wang, P.; Wu, P.; Egan, R. W.; Billah, M. M. Biochem.
Biophys. Res. Commun. 2000, 276, 1271–1277; (c) Sasaki,
T.; Kotera, J.; Yuasa, K.; Omori, K. Biochem. Biophys.
Res. Commun. 2000, 271, 575–583.
8. (a) Kotera, J. PDE7-news and views, William Harvey
Research Conferences, Porto, Portugal, December 5–7,
2001; (b) Kluxen, F. W. PCT Int. Appl. WO 0183772 A1,
2001.
9. (a) Barnes, M. J.; Cooper, N.; Davenport, R. J.; Dyke, H.
J.; Galleway, F. P.; Galvin, F. C. A.; Gowers, L.;
Haughan, A. F.; Lowe, C.; Meissner, J. W. G.; Montana,
J. G.; Morgan, T.; Picken, L. C.; Watson, R. Bioorg. Med.
Chem. Lett. 2001, 11, 1081–1083; (b) Castro, A.; Abasolo,
M. I.; Gil, C.; Segarra, V.; Martinez, A. Eur. J. Med.
Chem. 2001, 36, 333–338; (c) Martinez, A.; Castro, A.; Gil,
C.; Miralpeix, M.; Segarra, V.; Domenech, T.; Beleta, J.;
Palacios, J. M.; Ryder, H.; Miro, X.; Bonet, C.; Casacu-
berta, J. M.; Azorin, F.; Pina, B.; Puigdomenec, P. J. Med.
Chem. 2000, 43, 683–689; (d) Pittz, W. J.; Vaccaro, W.;
Huynh, T.; Leftheris, K.; Roberge, J. Y.; Barbosa, J.;
Guo, J.; Brown, B.; Watson, A.; Donaldson, K.; Starling,
G. C.; Kiener, P. A.; Poss, M. A.; Dodd, J. H.; Barrish,
J. C. Bioorg. Med. Chem. Lett. 2004, 14, 2955–2958.
10. Vergne, F.; Bernardelli, P.; Lorthiois, E.; Pham, N.;
Proust, E.; Oliveira, C.; Mafroud, A.-K.; Royer F.;
Wrigglesworth, R.; Schellhass, J. K.; Barvian, M. R.;
Moreau, F.; Idrissi, M.; Tertre, A.; Bertin, B.; Coupe, M.;
Berna, P.; Soulard, P. Bioorg. Med. Chem. Lett. 2004, 14,
11. Vergne, F.; Ducrot, P.; Andrianjara, C.; Bernardelli, P.;
Lorthiois, E. PCT Int. Appl. WO 0228847 A1, 2002.
12. (a) Molina, P.; Tarraga, A.; Espinosa, A. Synthesis 1988,
690–693; (b) Molina, P.; Tarraga, A.; Espinosa, A.
Heterocycles 1989, 29, 2301–2316.
4. Conclusion
In summary, we have rationally designed a structurally
novel series of potent PDE7 inhibitors displaying good
oral pharmacokinetics in rat. Compounds 20 and 21a
perfectly illustrated a successful metabolism-directed
optimization approach that allowed to design deriva-
tives with improved in vivo pharmacokinetics.
Acknowledgements
We thank the scientists from the Analytical Support
Group for their help in compound characterization