2610
A. Solladie´-Ca6allo et al. / Tetrahedron: Asymmetry 12 (2001) 2605–2611
3
3
2J=18 Hz, J=5.5 Hz, J=1.5 Hz, H4a), 3.82 (2H, AB,
CH2-S), 5.09 (1H, m, H1), 5.11 (2H, CH2-O), 6.86 (1H,
dd, 3J=8 Hz, 4J=1 Hz, H6), 6.97 (1H, d, 3J=8 Hz, H8),
6. Solladie-Cavallo, A.; Diep-Vohuule, A. J. Org. Chem.
1995, 60, 3494.
7. Solladie-Cavallo, A.; Diep-Voluule, A.; Sunjic, V.; Vin-
covic, V. Tetrahedron: Asymmetry 1996, 7, 1783.
8. Solladie-Cavallo, A.; Diep-Volhuule, A.; Isarno, T.
Angew. Chem., Int. Ed. 1998, 37, 1689.
3
7.20 (1H, t, J=8 Hz, H7), 7.21–7.48 (10 H, m, Hphenyl).
13C NMR (CDCl3): 18.5 (CH2), 25.1 (CH2), 27.9 (CH3),
28.0 (CH3), 33.6 (CH2-S), 48.7 (CH), 49.6 (C-S), 70.0
(CH-OH), 70.2 (CH2-O), 110.9 (CH), 122.7 (CH), 126.5
(C), 127.1 (CH), 127.3 (CH), 127.4 (CH), 128.2 (CH),
128.9 (CH), 129.4 (CH), 137.8 (C), 138.5 (C), 140.7 (C),
156.8 (C). IR: wO-H=3435 cm−1.
9. Most of the time some epoxide is lost during chromato-
graphic separation.
10. Studer, A.; Curran, D. P. Tetrahedron 1997, 1997, 6681.
11. Studer, A.; Jeger, P.; Wipf, P.; Curran, D. P. J. Org.
Chem. 1997, 62, 2917.
12. Only one diastereoisomer of sulfonium salts must be
3.6. Oxathiane 4
formed (which, as
a consequence, gives only one
diastereoisomer for the corresponding ylide) as a condi-
tion for obtaining high e.e.
13. Nafie, L. A. Annu. Rev. Phys. Chem. 1997, 48, 357–386.
14. Nafie, L. A.; Freedman, T. B. Enantiomer 1998, 3, 283–
297.
15. Nafie, L. A.; Freedman, T. B. In Circular Dichroism,
Theory and Practice; Nakanishi, K.; Berova, N.; Woody,
W., Eds.; Wiley: New York, 2000; pp. 97–131.
16. Nafie, L. A.; Freedman, T. B. In Infrared and Raman
Spectroscopy of Biological Materials; Yan, B.; Gremlish,
H.-U., Eds.; Marcel Dekker: New York, 2001; pp. 15–54.
17. (a) No addition of water. CH3CN was extracted with
pentane and the extraction monitored by TLC. More-
over, NEt3 and TMSCl must be dry and distilled, and
NaI dried; (b) Cazeau, P.; Duboudin, F.; Moulines, F.;
Badot, O.; Dunogues, J. Tetrahedron 1987, 43, 2075.
18. Anhydrous AcOH does not work.
3.6.1. Deprotection with Na/NH3. The benzylic deprotec-
tion was carried out following usual procedure33 and
yielded 3.19 g (90%, from 6.2 g of 8) of a crude product,
which was used without further purification in the next
step. 1H NMR (CDCl3): 1.60 (3H, s, CH3),
1.61 (3H, s, CH3), 1.7 (1H, m, H2), 2.04 (2H, m, H3a+
H3b), 2.07 (s, 1H, SH), 2.33 (1H, d, J=4 Hz, CHOH),
2.56 (1H, ddd, 2J=17.5 Hz, 3J=10.5 Hz, 3J=7 Hz, H4b),
3.02 (1H, ddd, J=17.5 Hz, J=4 Hz, J=3 Hz, H4a),
4.96 (1H, s, OH-Ar), 5.07 (1H, dd, H1), 6.73 (1H, dd,
3J=8 Hz, 4J=1 Hz, H6), 6.94 (1H, d, 3J=8 Hz, H8), 7.13
(1H, t, J=8 Hz, H7). 13C NMR (CDCl3): 18.8 (CH2),
24.3 (CH2), 31.5 (CH3), 33.1 (CH3), 47.2 (C-S), 50.4
(CH), 69.9 (CH-O), 114.7 (CH), 122.7 (CH), 123.4 (C),
127.5 (CH), 140.9 (C), 153.7 (C-O). IR: wOH=3369 and
wS-H=2561 cm−1.
2
3
3
19. LiAlH4/Et2O and NaBH4/MeOH/THF lead to a 70/30
cis/trans mixture.
3.6.2. Bridging. This last step was done following the
usual procedure33 and led to oxathiane 4 in 62% yield
(after chromatographic purification). 1H NMR (CDCl3):
1.34 (3H, s, CH3eq), 1.45 (1H, td, 3J=12.5 Hz, 3J=3J=2
Hz, H2), 1.68 (3H, s, CH3ax), 1.95 (1H, m, H3b), 2.30 (1H,
dq, 2J=3J=3J=12.5 Hz, 3J=6 Hz, H3a), 2.52 (1H, ddd,
20. It must be noted that H(1) is equatorial within ring A, but
axial within ring B, while it is the reverse for H(2).
21. In a trans ring junction, one of the methyls of the
gem-dimethyl system would be correlated to H(1), one
H(11) and, at least one H(3).
22. Freedman, T. B.; Long, F.; Citra, M.; Nafie, L. A.
Enantiomer 1999, 4, 103–109.
3
3
2J=17 Hz, J=12 Hz, J=6 Hz, H4b), 2.96 (1H, ddd,
2J=17 Hz, 3J=6 Hz, 3J=2 Hz, H4a), 4.69 (1H, t,
3J=4J=2 Hz, H1), 4.78 (1H, OH), 4.79 (1H, B of AB,
JAB=11 Hz, Heq), 5.21 (1H, A of AB, JAB=11 Hz,
Hax3), 6.72 (1H, dd, 3J=7.5 Hz, 4J=1 Hz, H6), 6.88 (1H,
23. Stephens, P. J.; Aamouche, A.; Devlin, F. J. J. Org.
Chem. 2001, 66, 3671–3677.
24. Diatkin, A. B.; Freedman, T. B.; Cao, X.; Dukor, R. K.;
Maryanoff, B. E.; Maryanoff, C. A.; Matthews, J. M.;
Shah, R. K.; Nafie, L. A. Chirality 2001, in press.
25. Freedman, T.; Dukor, R., K.; van Hoof, P. J. C. M.;
Kellenbach, E.; Nafie, L. A. Helv. Chim. Acta, to be
submitted.
3
d, J=7.5 Hz, H8), 7.09 (1H, t, J=7.5 Hz, H7). 13C
NMR (CDCl3): 18.0 (CH2), 23.2 (CH2), 28.3 (CH3), 29.3
(CH3), 42.1 (C), 43.8 (CH), 68.1 (CH2), 74.1 (CH-O),
114.6 (CH), 123.4 (CH), 124.0 (C), 126.8 (CH), 137.2
(C), 153.2 (C-O). IR: wOH=3391 cm−1. After resolution
on CHIRALCEL OD (eluent=MeCN) the first eluting
enantiomer has an e.r. of 100/0 and a chemical purity of
96%: [h]2D0=−58 (c=2.2, MeOH).
26. Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria,
G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V.
G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J.
C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin,
K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.;
Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.;
Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.;
Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.;
Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.;
Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.;
Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.;
Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.;
Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challa-
combe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.;
Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gor-
don, M.; Replogle, E. S.; Pople, J. A. Gaussian 98; A.9
ed.; Gaussian, Inc.: Pittsburgh, PA, 1998.
References
1. Eliel, E. L.; Koskimies, J. K.; Lohri, B. J. Am. Chem.
Soc. 1978, 100, 1614.
2. Eliel, E. L.; Frazee, W. J. J. Org. Chem. 1979, 44, 3598.
3. Lynch, J. E.; Eliel, E. L. J. Am. Chem. Soc. 1984, 106,
2943.
4. Solladie-Cavallo, A.; Adib, A. Tetrahedron 1992, 48,
2453.
5. Oxathiane 2 has also been used by Aggarwall in 1995:
Aggarwal, V. K.; Thompson, A.; Jones, R. V. H.;
Standen, M. Tetrahedron: Asymmetry 1995, 6, 2557.