1886
E. S. Lee et al. / Tetrahedron Letters 44 (2003) 1883–1886
Am. Chem. Soc. 1977, 99, 2306; (k) Onaka, T. Tetra-
hedron Lett. 1971, 4387; (l) Petersen, S.; Tietze, E. Ann.
1959, 623, 166.
Kokai Tokkyo Koho, 1984, JP 83-190614; (c) Manhas,
M. S.; Amin, S. G. J. Heterocyclic Chem. 1976, 13, 903;
(d) Levy, P. R.; Stephen, H. J. Chem. Soc. 1956, 985.
10. Our attempts led to either a mixture of inseparable
products or resulted in low yield (<5%) even at elevated
temperature (180–200°C). Efforts to isolate any of 7 have
not yet been successful.
11. Southwick, P. L.; Crouch, R. T. J. Am. Chem. Soc. 1953,
75, 3413.
12. Abramovitch, R. A.; Shapiro, D. J. Chem. Soc. 1956,
4589.
2. (a) Mehta, D. R.; Naravane, J. S.; Desai, R. M. J. Org.
Chem. 1963, 28, 445; (b) Amin, A. H.; Mehta, D. R.
Nature 1959, 183, 1317. For synthesis of 2a, see; (c) Ref.
1e; (d) Eguchi, S.; Suzuki, T.; Okawa, T.; Matsushita, Y.;
Yashima, E.; Okamoto, Y. J. Org. Chem. 1996, 61, 7316,
and references cited therein.
3. (a) Wu, X.; Qin, G.; Cheung, K. K.; Cheng, K. F.
Tetrahedron 1997, 53, 13323. For synthesis of 2b, see: (b)
Molina, P.; Tarraga, A.; Gonzalez-Tejero, A. Synthesis
2000, 11, 1523.
4. (a) Ma, Z. Z.; Hano, Y.; Nomura, T.; Chen, Y.-J.
Heterocycles 1997, 46, 541. For synthesis of 3, see: (b)
Dallavalle, S.; Merlini, L. Tetrahedron Lett. 2002, 43,
1835; (c) Toyota, M.; Komori, C.; Ihara, M. Heterocycles
2002, 56, 101; (d) Kelly, T. R.; Chamberland, S.; Silva, R.
A. Tetrahedron Lett. 1999, 40, 2723; (e) Ma, Z. Z.; Hano,
Y.; Nomura, T.; Chen, Y.-J. Heterocycles 1999, 51, 1593;
(f) Wang, H.; Ganesan, A. Tetrahedron Lett. 1998, 39,
9097.
5. (a) Fiedler, E.; Fiedeler, H.-P.; Gerhard, A.; Keller-
Schierlein, W.; Ko¨nig, W. A.; Za¨hner, H. Arch. Micro-
biol. 1976, 107, 349. For synthesis of 4, see: (c)
Moskovkina, T. V. Russ. J. Org. Chem. 1997, 33, 125; (d)
Bergman, J.; Lindstro¨m, J.-O.; Tilstam, U. Tetrahedron
1985, 41, 2879; (e) Mitscher, L. A.; Wong, W.-C.;
DeMeulenaere, T.; Sulko, J.; Drake, S. Heterocycles
1981, 15, 1017; (f) Honda, G.; Tabata, M. Planta Med.
1978, 36, 85; (g) Friedla¨nder, P.; Rosechdestwensky, N.
Ber. 1915, 48, 1841.
6. (a) Asahina, A.; Kashiwaki, K. J. Pharm. Soc., Jpn. 1915,
405, 1293. For synthesis of 5, see: (b) Mohanta, P. K.;
Kim, K. Tetrahedron Lett. 2002, 43, 3993; (c) Lee, S. H.;
Kim, S. I.; Park, J. G.; Lee, E. S.; Jahng, Y. Heterocycles,
2001, 55, 1555; (d) Pachter, I. J.; Raffauf, E.; Ullyot, G.
E.; Ribeiro, O. J. Am. Chem. Soc. 1960, 82, 5187; (e)
Ashima, Y.; Manske, R. H. F.; Robinson, R. J. Chem.
Soc. 1927, 1708. For review on 5 and related compounds,
see (f) Bergman, J. In The Alkaloids, Chemistry and
Pharmacology; Brossi, A., Ed.; Vol. XXI; Academic
Press: New York, 1983; pp. 29–54.
7. von Niementowski, S. J. Prakt. Chem. 1895, 51, 1895.
8. (a) Brown, D. J. Quinazolines, Supplement I; Interscience
Publishers: New York, 1996; pp. 1–150; (b) Armarego,
W. L. F. In Fused Pyrimidines; Brown, D. J., Ed.;
Interscience Publishers: New York, 1967; pp. 89–218.
9. (a) Nesterova, I. N.; Radkevich, T. P.; Granik, V. G.
Khim.-Farm. Zhur. 1991, 25, 28 CA 116:41412; (b) Jpn.
13. Indolo[2,1-b]quinazolin-12(6H)-one (10): mp 215–216°C
(lit.14 mp 215–216°C). IR (KBr) w 1680, 1640, 1605, 1560,
1465, 1360, 1330, 1310 cm−1 1H NMR (CDCl3, 300
.
MHz) l 8.53 (dd, J=8.4, 1.8 Hz, 1H), 8.46 (dd, J=8.4,
1.2 Hz, 1H), 8.02 (ddd, J=8.2, 1.5, 0.5 Hz, 1H), 7.68 (td,
J=8.2, 1.5 Hz, 1H), 7.54–7.44 (m, 2H), 7.08 (t, J=8.2
Hz, 1H), 6.98 (t, J=8.4 Hz, 1H), 4.22 (s, 2H). 6-Benzyl-
idenindolo[2,1-b]quinoazolin-12(6H)-one (11): A mixture
of 11.7 g (0.05 mol) of 10 and 31.8 g (0.30 mol) of
benzaldehyde in 80 mL of Ac2O was refluxed for 48 h.
Excess benzaldehyde and Ac2O were removed under
reduced pressure. The resulting mixture was carefully
poured into 100 mL of 50% NaOH and extracted with
CH2Cl2 (50 mL×3). Organic layers were combined and
dried over MgSO4. Evaporation of the solvent gave a
yellow solid (14.4 g, 89%) whose 1H NMR spectrum
showed presence of two regioisomers (E- and Z- through
the benzylidene double bond). Thus, compound 11 was
not fully characterized, but instead carried to the next
step. Trypthanthrin (4): A solution of 3.22 g (0.01 mol) of
11 in 200 mL of CH2Cl2 was cooled in an acetone–dry ice
bath and O3 was bubbled through the solution. Excess O3
was purged and 20 mL of (CH3)2S was added to the
mixture. Evaporation of the solvent afforded 2.48 g of
semi-solid, which was chromatographed on silica gel,
eluting with CH2Cl2:EtOAc (1:1). The latter fractions
gave 2.06 g (83%) of yellow needles after recrystallization
from the eluent: mp 265–266°C (lit.5b mp 267–268°C,
1
lit.5g mp 261°C). IR (KBr) v 1725, 1675 cm−1. H NMR
(400 MHz, CDCl3) d 8.68 (dm, J=8.0 Hz, H10), 8.48
(ddd, J=8.2, 1.5, 0.8 Hz, H1), 8.10 (ddd, J=8.0, 1.2, 0.6
Hz, H4), 7.96 (ddd, J=7.8, 1.4, 0.6 Hz, H7), 7.91 (ddd,
J=8.2, 7.5, 1.5 Hz, H3), 7.85 (ddd, J=8.0, 7.8, 1.3 Hz,
H9), 7.72 (ddd, J=8.2, 7.8, 1.5 Hz, H2), 7.45 (ddd,
J=8.0, 7.5, 1.2 Hz, H8).
14. Bergman, J.; Tilstam, U.; Toernroos, K. W. J. Chem.
Soc., Perkin Trans. 1 1987, 519.