Organometallics
Communication
M.; Cramer, N. Cooperative Effects Between Chiral Cpx-Iridium(III)
Catalysts and Chiral Carboxylic Acids in Enantioselective C−H
Amidations of Phosphine Oxides. Angew. Chem., Int. Ed. 2017, 56,
Catalyzed Direct C−H Bond Functionalization. Acc. Chem. Res.
2017, 50, 351−365.
(20) For selected examples, see: (a) Hayashi, T.; Yamamoto, K.;
Kumada, M. Asymmetric Catalytic Hydrosilylation of Ketones
Preparation of Chiral Ferrocenylphosphines as Chiral Ligands.
Tetrahedron Lett. 1974, 15, 4405−4408. (b) Togni, A.; Breutel, C.;
Schnyder, A.; Spindler, F.; Landert, H.; Tijani, A. A Novel Easily
Accessible Chiral Ferrocenyldiphosphine for Highly Enantioselective
Hydrogenation, Allylic Alkylation, and Hydroboration Reactions. J.
Am. Chem. Soc. 1994, 116, 4062−4066. (c) Richards, C. J.; Damalidis,
T.; Hibbs, D. E.; Hursthouse, M. B. Synthesis of 2-[2-
(Diphenylphosphino)ferrocenyl]oxazoline Ligands. Synlett 1995,
1995, 74−76. (d) Nishibayashi, Y.; Uemura, S. Asymmetric Synthesis
and Highly Diastereoselective ortho-Lithiation of Oxazolinylferro-
cenes. Synlett 1995, 1995, 79−81. (e) Sawamura, M.; Hamashima, H.;
Sugawara, M.; Kuwano, R.; Ito, Y. Synthesis and Structures of Trans-
Chelating Chiral Diphosphine Ligands Bearing Aromatic P-Sub-
stituents, (S,S)-(R,R)- and (R,R)-(S,S)-2,2’’-Bis[1-(diarylphosphino)-
ethyl]-1,1’’-biferrocene (ArylTRAPs) and Their Transition Metal
Complexes. Organometallics 1995, 14, 4549−4558. (f) Ruble, J. C.;
Fu, G. C. Chiral π-Complexes of Heterocycles with Transition Metals:
A Versatile New Family of Nucleophilic Catalysts. J. Org. Chem. 1996,
61, 7230−7231. (g) Hodous, B. L.; Ruble, J. C.; Fu, G. C.
Enantioselective Addition of Alcohols to Ketenes Catalyzed by a
Planar-Chiral Azaferrocene: Catalytic Asymmetric Synthesis of
Arylpropionic Acids. J. Am. Chem. Soc. 1999, 121, 2637−2638.
(h) Ireland, T.; Grossheimann, G.; Wieser-Jeunesse, C.; Knochel, P.
Ferrocenyl Ligands with Two Phosphanyl Substituents in the α,ε
Positions for the Transition Metal Catalyzed Asymmetric Hydro-
genation of Functionalized Double Bonds. Angew. Chem., Int. Ed.
1999, 38, 3212−3215. (i) Bringmann, G.; Hinrichs, J.; Peters, K.;
Peters, E.-M. Synthesis of a Chiral Aryl-Ferrocenyl Ligand, by
Intramolecular Coupling to a Biaryl-Related Lactone. J. Org. Chem.
2001, 66, 629−632. (j) Ireland, T.; Tappe, K.; Grossheimann, G.;
Knochel, P. Synthesis of a New Class of Chiral 1,5-Diphosphanyl-
ferrocene Ligands and Their Use in Enantioselective Hydrogenation.
Chem. - Eur. J. 2002, 8, 843−852. (k) Boaz, N. W.; Debenham, S. D.;
Mackenzie, E. B.; Large, S. E. Phosphinoferrocenylaminophosphines
as Novel and Practical Ligands for Asymmetric Catalysis. Org. Lett.
́
15088−15092. (b) Jang, Y.-S.; Wozniak, Ł.; Pedroni, J.; Cramer, N.
Access to P- and Axially Chiral Biaryl Phosphine Oxides by
Enantioselective CpxIrIII-Catalyzed C−H Arylations. Angew. Chem.,
Int. Ed. 2018, 57, 12901−12905. (c) Sun, Y.; Cramer, N.
Enantioselective Synthesis of Chiral-at-Sulfur 1,2-Benzothiazines by
CpxRhIII-Catalyzed C−H Functionalization of Sulfoximines. Angew.
Chem., Int. Ed. 2018, 57, 15539−15543. (d) Brauns, M.; Cramer, N.
Efficient Kinetic Resolution of Sulfur-Stereogenic Sulfoximines
Exploiting CpxRhIII-Catalyzed C−H Functionalization. Angew.
Chem., Int. Ed. 2019, 58, 8902−8906.
(13) (a) Lapointe, D.; Fagnou, K. Overview of the Mechanistic
Work on the Concerted Metallation−Deprotonation Pathway. Chem.
Lett. 2010, 39, 1118−1126. (b) Ackermann, L. Carboxylate-Assisted
Transition-Metal-Catalyzed C−H Bond Functionalizations: Mecha-
nism and Scope. Chem. Rev. 2011, 111, 1315−1345. (c) Davies, D. L.;
Macgregor, S. A.; McMullin, C. L. Computational Studies of
Carboxylate-Assisted C−H Activation and Functionalization at
Group 8−10 Transition Metal Centers. Chem. Rev. 2017, 117,
8649−8709.
(14) (a) Zell, D.; Bursch, M.; Muller, V.; Grimme, S.; Ackermann, L.
̈
Full Selectivity Control in Cobalt(III)-Catalyzed C−H Alkylations by
Switching of the C−H Activation Mechanism. Angew. Chem., Int. Ed.
2017, 56, 10378−10382. (b) Pesciaioli, F.; Dhawa, U.; Oliveira, J. C.
A.; Yin, R.; John, M.; Ackermann, L. Enantioselective Cobalt(III)-
Catalyzed C−H Activation Enabled by Chiral Carboxylic Acid
Cooperation. Angew. Chem., Int. Ed. 2018, 57, 15425−15429.
(15) Liu, Y.-H.; Li, P.-X.; Yao, Q.-J.; Zhang, Z.-Z.; Huang, D.-Y.; Le,
M. D.; Song, H.; Liu, L.; Shi, B.-F. Cp*Co(III)/MPAA-Catalyzed
Enantioselective Amidation of Ferrocenes Directed by Thioamides
Under Mild Conditions. Org. Lett. 2019, 21, 1895−1899.
(16) Wang and co-workers reported a chiral transient directing
group for Cp*RhIII-catalyzed enantioselective C−H functionalization:
Li, G.; Jiang, J.; Xie, H.; Wang, J. Introducing the Chiral Transient
Directing Group Strategy to Rhodium(III)-Catalyzed Asymmetric C−
H Activation. Chem. - Eur. J. 2019, 25, 4688−4694.
(17) For pioneering work on Pd/monoprotected amino acid
(MPAA) catalysts for enantioselective C−H functionalization
reactions, see: (a) Shi, B.-F.; Maugel, N.; Zhang, Y.-H.; Yu, J.-Q.
PdII-Catalyzed Enantioselective Activation of C(sp2)−H and C(sp3)−
H Bonds Using Monoprotected Amino Acids as Chiral Ligands.
Angew. Chem., Int. Ed. 2008, 47, 4882−4886. For selected recent
2002, 4, 2421−2424. (l) Garcia Mancheno, O.; Priego, J.; Cabrera, S.;
̃
́
́
Gomez Arrayas, R.; Llamas, T.; Carretero, J. C. 1-Phosphino-2-
sulfenylferrocenes as Planar Chiral Ligands in Enantioselective
Palladium-Catalyzed Allylic Substitutions. J. Org. Chem. 2003, 68,
3679−3686. (m) Jensen, J. F.; Johannsen, M. New Air-Stable Planar
Chiral Ferrocenyl Monophosphine Ligands: Suzuki Cross-Coupling
of Aryl Chlorides and Bromides. Org. Lett. 2003, 5, 3025−3028.
(n) Spindler, F.; Malan, C.; Lotz, M.; Kesselgruber, M.; Pittelkow, U.;
Rivas-Nass, A.; Briel, O.; Blaser, H.-U. Modular Chiral Ligands: The
Profiling of the Mandyphos and Taniaphos Ligand Families.
Tetrahedron: Asymmetry 2004, 15, 2299−2306.
̈
work, see: (b) Chen, G.; Gong, W.; Zhuang, Z.; Andra, M. S.; Chen,
Y.-Q.; Hong, X.; Yang, Y.-F.; Liu, T.; Houk, K. N.; Yu, J.-Q. Ligand-
Accelerated Enantioselective Methylene C(sp3)−H Bond Activation.
Science 2016, 353, 1023−1027. (c) Wu, Q.-F.; Shen, P.-X.; He, J.;
Wang, X.-B.; Zhang, F.; Shao, Q.; Zhu, R.-Y.; Mapelli, C.; Qiao, J. X.;
Poss, M. A.; Yu, J.-Q. Formation of α-Chiral Centers by Asymmetric
β-C(sp3)−H Arylation, Alkenylation, and Alkynylation. Science 2017,
355, 499−503. (d) Shao, Q.; Wu, Q.-F.; He, J.; Yu, J.-Q.
Enantioselective γ-C(sp3)−H Activation of Alkyl Amines via Pd-
(II)/Pd(0) Catalysis. J. Am. Chem. Soc. 2018, 140, 5322−5325.
(e) Shen, P.-X.; Hu, L.; Shao, Q.; Hong, K.; Yu, J.-Q. Pd(II)-
Catalyzed Enantioselective C(sp3)−H Arylation of Free Carboxylic
Acids. J. Am. Chem. Soc. 2018, 140, 6545−6549.
(21) For general reviews on cobalt-catalyzed C−H functionalization
reactions, see: (a) Gao, K.; Yoshikai, N. Low-Valent Cobalt Catalysis:
New Opportunities for C−H Functionalization. Acc. Chem. Res. 2014,
47, 1208−1219. (b) Moselage, M.; Li, J.; Ackermann, L. Cobalt-
Catalyzed C−H Activation. ACS Catal. 2016, 6, 498−525.
(c) Usman, M.; Ren, Z.-H.; Wang, Y.-Y.; Guan, Z.-H. Recent
Developments in Cobalt Catalyzed Carbon−Carbon and Carbon−
Heteroatom Bond Formation via C−H Bond Functionalization.
Synthesis 2017, 49, 1419−1443. (d) Yoshino, T.; Matsunaga, S.
Cobalt-Catalyzed C(sp3)−H Functionalization Reactions. Asian J.
Org. Chem. 2018, 7, 1193−1205.
(22) For the racemic reactions, see: (a) Tan, P. W.; Mak, A. M.;
Sullivan, M. B.; Dixon, D. J.; Seayad, J. Thioamide-Directed
Cobalt(III)-Catalyzed Selective Amidation of C(sp3)−H Bonds.
Angew. Chem., Int. Ed. 2017, 56, 16550−16554. For selected
examples for C−H amidation reactions using dioxazolones under
Cp*CoIII or Cp*RhIII catalysis. see: (b) Park, Y.; Park, K. T.; Kim, J.
G.; Chang, S. Mechanistic Studies on the Rh(III)-Mediated Amido
Transfer Process Leading to Robust C−H Amination with a New
(18) Yang, Y.-F.; Hong, X.; Yu, J.-Q.; Houk, K. N. Experimental-
Computational Synergy for Selective Pd(II)-Catalyzed C−H
Activation of Aryl and Alkyl Groups. Acc. Chem. Res. 2017, 50,
2853−2860.
(19) For recent reviews on chiral ferrocene derivatives, see:
́
́
(a) Gomez Arrayas, R.; Adrio, J.; Carretero, J. C. Recent Applications
of Chiral Ferrocene Ligands in Asymmetric Catalysis. Angew. Chem.,
Int. Ed. 2006, 45, 7674−7715. (b) Schaarschmidt, D.; Lang, H.
Selective Syntheses of Planar-Chiral Ferrocenes. Organometallics
2013, 32, 5668−5704. (c) Gao, D.-W.; Gu, Q.; Zheng, C.; You, S.-
L. Synthesis of Planar Chiral Ferrocenes via Transition-Metal-
E
Organometallics XXXX, XXX, XXX−XXX