Organic Letters
Letter
Synthesis. Chem. Rev. 2016, 116, 10035−10074. (d) Twilton, J.; Le,
C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. The
merger of transition metal and photocatalysis. Nat. Rev. Chem. 2017,
1, 0052. (e) Silvi, M.; Melchiorre, P. Enhanching the potential of
enantioselective organocatalysis with light. Nature 2018, 554, 41−49.
(6) (a) Qvortrup, K.; Rankic, D. A.; MacMillan, D. W. C. A General
Strategy for Organocatalytic Activation of C−H Bonds via Photo-
redox Catalysis: Direct Arylation of Benzylic Ethers. J. Am. Chem. Soc.
2014, 136, 626−629. For β-amino ether synthesis, see: (b) Hager,
D.; MacMillan, D. W. C. Activation of C−H Bonds via the Merger of
Photoredox and Organocatalysis: A Coupling of Benzylic Ethers with
Schiff Bases. J. Am. Chem. Soc. 2014, 136, 16986−16989. For another
designed example of ether synthesis via C−H atom abstraction, see:
(c) Zhang, J.; Li, Y.; Zhang, F.; Hu, C.; Chen, Y. Generation of
Alkoxyl Radicals by Photoredox Catalysis Enables Selective C(sp3)-H
Functionalization under Mild Reaction Conditions. Angew. Chem., Int.
Ed. 2016, 55, 1872−1875.
Efficient Visible Light Photocatalysis of [2 + 2] Enone Cyclo-
additions. J. Am. Chem. Soc. 2008, 130, 12886−12887. (l) Tarantino,
K. T.; Liu, P.; Knowles, R. R. Catalytic Ketyl-Olefin Cyclizations
Enabled by Proton-Coupled Electron Transfer. J. Am. Chem. Soc.
2013, 135, 10022−10025. (m) Wang, C.; Qin, J.; Shen, X.; Riedel, R.;
Harms, K.; Meggers, E. Asymmetric Radical−Radical Cross-Coupling
through Visible-Light-Activated Iridium Catalysis. Angew. Chem., Int.
Ed. 2016, 55, 685−688. (n) Chen, M.; Zhao, X.; Yang, C.; Xia, W.
Visible-Light-Triggered Directly Reductive Arylation of Carbonyl/
Iminyl Derivatives through Photocatalytic PCET. Org. Lett. 2017, 19,
̈
3807−3810. (o) Berger, A. L.; Donabauer, K.; Konig, B. Photo-
catalytic Barbier reaction − visible-light induced allylation and
benzylation of aldehydes and ketones. Chem. Sci. 2018, 9, 7230−
7235. (p) Wang, L.; Lear, J. M.; Rafferty, S. M.; Fosu, S. C.; Nagib, D.
A. Ketyl radical reactivity via atom transfer catalysis. Science 2018,
362, 225−229.
(10) For selected publications, see: (a) Nawrat, C. C.; Jamison, C.
R.; Slutskyy, Y.; MacMillan, D. W. C.; Overman, L. E. Oxalates as
Activating Groups for Alcohols in Visible Light Photoredox Catalysis:
Formation of Quaternary Centers by Redox-Neutral Fragment
Coupling. J. Am. Chem. Soc. 2015, 137, 11270−11273. (b) Choi, G.
J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R. R. Catalytic alkylation
of remote C−H bonds enabled by proton-coupled electron transfer.
Nature 2016, 539, 268−271. (c) Patel, N. R.; Kelly, C. B.; Siegenfeld,
A. P.; Molander, G. A. Mild, Redox-Neutral Alkylation of Imines
Enabled by an Organic Photocatalyst. ACS Catal. 2017, 7, 1766−
1770. (d) Aycock, R. A.; Vogt, D. B.; Jui, N. T. A practical and
scalable system for heteroaryl amino acid synthesis. Chem. Sci. 2017,
8, 7998−8003. (e) Shu, C.; Mega, R. S.; Andreassen, B. J.; Noble, A.;
Aggarwal, V. K. Synthesis of Functionalized Cyclopropanes from
Carboxylic Acids by a Radical Addition−Polar Cyclization Cascade.
Angew. Chem., Int. Ed. 2018, 57, 15430−15434.
(7) Arendt, K. M.; Doyle, A. G. Dialkyl Ether Formation by Nickel-
Catalyzed Cross-Coupling of Acetals and Aryl Iodides. Angew. Chem.,
Int. Ed. 2015, 54, 9876−9880.
(8) MacMillan and co-workers have reported access to allylic ethers
via decarboxylative coupling of α-oxy carboxylic acids with vinyl
halides: (a) Noble, A.; McCarver, S. J.; MacMillan, D. W. C. Merging
Photoredox and Nickel Catalysis: Decarboxylative Cross-Coupling of
Carboxylic Acids with Vinyl Halides. J. Am. Chem. Soc. 2015, 137,
624−627. For other methods involving α-oxy radical generation, see:
(b) Ramirez, N. P.; Gonzalez-Gomez, J. C. Decarboxylative Giese-
Type Reaction of Carboxylic Acids Promoted by Visible Light: A
sustainable and Photoredox-Neutral Protocol. Eur. J. Org. Chem.
2017, 2017, 2154−2163. (c) Barton, D. H. R.; Gateau-Olesker, A.;
́
Gero, S. D.; Lacher, B.; Tachdjian, C.; Zard, S. Z. Radical
Decarboxylative Alkylation of Tartaric Acid. Tetrahedron 1993, 49,
4589−4602. (d) Matsuda, F.; Kawatsura, M.; Hosaka, K.; Shirahama,
H. Hydroxyl-Directed Intramolecular Ketone-Olefin Couplings
Promoted by SmI2. Chem. - Eur. J. 1999, 5, 3252−3259.
(11) For acetal activation by Lewis acids, see: (a) Hatano, B.;
Nagahashi, K.; Habaue, S. Reductive Coupling of Aromatic Dialkyl
Acetals Using the Combination of Zinc and Chlorotrimethylsilane in
the Presence of Potassium Carbonate. Chem. Lett. 2007, 36, 1418−
1419. (b) Lin, Z.; Lan, Y.; Wang, C. Synthesis of gem-Difluoroalkenes
via Nickel-Catalyzed Reductive C−F and C−O Bond Cleavage. ACS
Catal. 2019, 9, 775−780.
(9) For imine umpolung chemistry, see: (a) Rono, L. J.; Yayla, H.
G.; Wang, D. Y.; Armstrong, M. F.; Knowles, R. R. Enantioselective
Photoredox Catalysis Enabled by Proton-Coupled Electron Transfer:
Development of an Asymmetric Aza-Pinacol Cyclization. J. Am. Chem.
́
Soc. 2013, 135, 17735−17738. (b) Jeffrey, J. L.; Petronijevic, F. R.;
(12) Rossolini, T.; Leitch, J. A.; Grainger, R.; Dixon, D. J.
Photocatalytic Three-Component Umpolung Synthesis of 1,3-
Diamines. Org. Lett. 2018, 20, 6794−6798.
MacMillan, D. W. C. Selective Radical−Radical Cross-Couplings:
Design of a Formal β-Mannich Reaction. J. Am. Chem. Soc. 2015, 137,
8404−8407. (c) Uraguchi, D.; Kinoshita, N.; Kizu, T.; Ooi, T.
Synergistic Catalysis of Ionic Brønsted Acid and Photosensitizer for a
Redox Neutral Asymmetric α-Coupling of N-Arylaminomethanes
with Aldimines. J. Am. Chem. Soc. 2015, 137, 13768−13771. (d) Qi,
L.; Chen, Y. Polarity-Reversed Allylations of Aldehydes, Ketones, and
Imines Enabled by Hantzsch Ester in Photoredox Catalysis. Angew.
Chem., Int. Ed. 2016, 55, 13312−13315. (e) Fuentes de Arriba, A. L.;
Urbitsch, F.; Dixon, D. J. Umpolung synthesis of branched a-
functionalized amines from imines via photocatalytic three
component reductive coupling reactions. Chem. Commun. 2016, 52,
14434−14437. (f) Fava, E.; Millet, A.; Nakajima, M.; Loescher, S.;
Rueping, M. Reductive Umpolung of Carbonyl Derivatives with
Visible-Light Photoredox Catalysis: Direct Access to Vicinal Diamines
and Amino Alcohols via α-Amino Radicals and Ketyl Radicals. Angew.
Chem., Int. Ed. 2016, 55, 6776−6779. (g) Lee, K. N.; Lei, Z.; Ngai,
M.-Y. β-Selective Reductive Coupling of Alkenylpyridines with
Aldehydes and Imines via Synergistic Lewis Acid/Photoredox
Catalysis. J. Am. Chem. Soc. 2017, 139, 5003−5006. (h) Leitch, J.
A.; Fuentes de Arriba, A. L.; Tan, J.; Hoff, O.; Martinez, C. M.; Dixon,
D. J. Photocatalytic reverse polarity Povarov reaction. Chem. Sci.
2018, 9, 6653−6658. (i) Trowbridge, A.; Reich, D.; Gaunt, M. J.
Multicomponent synthesis of tertiary alkylamines by photocatalytic
olefin-hydroaminoalkylation. Nature 2018, 561, 522−527. (j) Vasu,
D.; Fuentes de Arriba, A. L.; Leitch, J. A.; de Gombert, A.; Dixon, D.
J. Primary α-tertiary amine synthesis via α-C−H functionalization.
Chem. Sci. 2019, 10, 3401−3407. For aldehyde and ketone umpolung
chemistry see: (k) Ischay, M. A.; Anzovino, M. E.; Du, J.; Yoon, T. P.
(14) The model substrate showed full conversion after 5 h.
However, to ensure consistency for all starting materials, reactions
were run for 18 h.
(15) Ketals of α-branched ketones as well as heterocycle-containing
derivatives were not reactive under these conditions.
(16) Seath, C. P.; Vogt, D. B.; Xu, Z.; Boyington, A. J.; Jui, N. T.
Radical Hydroarylation of Functionalized Olefins and Mechanistic
Investigation of Photocatalytic Pyridyl Radical Reactions. J. Am.
Chem. Soc. 2018, 140, 15525−15534.
(17) (a) Musacchio, A. J.; Lainhart, B. C.; Zhang, X.; Naguib, S. G.;
Sherwood, T. C.; Knowles, R. R. Catalytic intermolecular hydro-
aminations of unactivated olefins with secondary alkyl amines. Science
2017, 355, 727−730. (b) Zhu, Q.; Graff, D. E.; Knowles, R. R.
Intermolecular Anti-Markovnikov Hydroamination of Unactivated
Alkenes with Sulfonamides Enabled by Proton-Coupled Electron
Transfer. J. Am. Chem. Soc. 2018, 140, 741−747. (c) Nguyen, S. T.;
Zhu, Q.; Knowles, R. R. PCET-Enabled Olefin Hydroamidation
Reactions with N-Alkyl Amides. ACS Catal. 2019, 9, 4502−4507.
(18) (a) Davies, J.; Svejstrup, T. D.; Fernandez Reina, D.; Sheikh, N.
S.; Leonori, D. Visible-Light-Mediated Synthesis of Amidyl Radicals:
Transition-Metal-Free Hydroamination and N-Arylation Reactions. J.
Am. Chem. Soc. 2016, 138, 8092−8095. (b) Schweitzer-Chaput, B.;
Horwitz, M. A.; de Pedro Beato, E.; Melchiorre, P. Photochemical
generation of radicals from alkyl electrophiles using a nucleophilic
organic catalyst. Nat. Chem. 2019, 11, 129−135.
E
Org. Lett. XXXX, XXX, XXX−XXX