4
Chem. Soc. Perkin Trans. 1 1985, 2307; (d) Hutton, G.; Jolliff, T.;
important role in the formation of β-ketophosphine oxide (Scheme
3, Eq (3)). To elucidate the origin of the carbonyl oxygen atom of
β-ketophosphine oxides, 18O labeling experiment was performed
in the reaction of 1a and 2a (Scheme 3, Eq (4)). The
experimental result shows that the carbonyl oxygen atom of β-
ketophosphine oxide comes from dioxygen. In addition, the
desired product 3a was not obtained when β-hydroxyphosphine
oxide 4a was treated under the standard conditions, suggesting
that β-hydroxyphosphine oxide should not be an intermediate in
this reaction system (Scheme 3, Eq (5)).
Mitchell, H.; Warren, S. Tetrahedron Lett. 1995, 36, 7905; (e) Cavalla,
D.; Gueguen, C.; Nelson, A.; Russell, M. G.; Warren, S. Tetrahedron
Lett. 1996, 37, 7465.
3. (a) McCabe, D. J.; Duesler, E. N.; Paine, R. T. Inorg. Chem. 1985, 24,
4626; (b) Lestas, C. N.; Truter, M. R. J. Chem. Soc. A. 1971, 738; (c)
Babecki, R.; Platt, A. W. G.; Fawcett, J. J. Chem. Soc., Dalton Trans.
1992, 675; (d) Braunstein, P.; Cea, S. C.; Decian, A.; Fisher, J. Inorg.
Chem.1992, 31, 4203.
4. (a) Bartoli, G.; Bosco, M.; Sambri, L. Tetrahedron Lett. 1996, 37, 7421;
(b) Buss, A. D.; Mason, R.; Warren, S. Tetrahedron Lett. 1983, 24,
5293.
5. Portnoy, N. A.; Morrow, C. J.; Chattha, M. S.; Williams, J. C.; Aguiar,
J. A. M. Tetrahedron Lett. 1971, 18, 1397.
6. Antoshin, A. E.; Reikhov, Yu. N.; Tugushov, K. V.; Malkova, A. N.
Russ. J. Gen. Chem. 2009, 79, 2113.
7. Li, X. b.; Hu, G. b.; Luo, P.; Tang, G.; Gao, Y. X.; Xu, P. X.; Zhao, Y.
F. Adv. Synth. Catal. 2012, 354, 2427.
8. Ke, J.; Tang, Y.; Yi, H.; Li, Y.; Cheng, Y.; Liu, C.; Lei, A. Angew.
Chem. Int. Ed. 2015, 54, 6604.
9. (a) Chen, X. C.; Li, X.; Chen, X. L.; Qu, L. B.; Chen, J. Y.; Sun, K.;
Liu, Z. D.; Bi, W. Z.; Xia, Y. Y.; Wu, H. T.; Zhao, Y. F. Chem.
Commun. 2015, 51, 3846; (b) Yi, N. N.; Wang, R. J.; Zou, H. X.; He,
W. B.; Fu, W. Q.; He, W. M. J. Org. Chem. 2015, 80, 5023; (c) Zhou,
M. X.; Chen, M.; Zhou, Y.; Yang, K.; Su, J. H.; Du, J. F.; Song, Q. L.
Org. Lett. 2015, 17, 1786; (d) Zhong, W.-W.; Zhang, Q.; Li, M.-S.; Hu,
D.-Y.; Cheng, M.; Du, F.-T.; Ji, J.-X.; Wei, W. Synth. Commun. 2016,
46, 1377; (e) Peng, P.; Lu, Q. Q.; Peng, L.; Liu, C.; Wang, G. Y.; Lei,
A. W., Chem. Commun. 2016, 52, 12338.
Based on the above results and previous reports 9-13,15-17, a
possible reaction pathway was proposed as shown in Scheme 4.
Firstly, diphenylphosphine oxide 2a was oxidized by copper-
activated dioxygen to generate phosphonyl radical 5a and CuII-
OOH.17 Subsequently, the resulting phosphonyl radical 5a
selectively added to alkene 1a gave alkyl radical 6a, which
interacted with CuII-OOH to produce alkylperoxy 7a. Finally, the
elimination of water from alkylperoxy 7a gave the desired
product 3a.15,17
10. (a) Zhang, P. B.; Zhang, L. L.; Gao, Y. Z.; Xu, J.; Fang, H.; Tang, G.;
Zhao, Y. F. Chem. Commun. 2015, 51, 7839; (b) Zeng, Y. F.; Tan, D.
H.; Lv, W. X.; Li, Q. J.; Wang, H. G. Eur. J. Org. Chem. 2015, 4335;
11. Zhou, M. X.; Zhou, Y.; Song, Q. L. Chem. Eur. J. 2015, 21, 10654.
12. (a) Fu, Q.; Yi, D.; Zhang, Z-J.; Liang, W. Chen, S-Y.; Yang, L.; Zhang,
Q.; Ji, J-X.; Wei, W. Org. Chem. Front, 2017, 4, 1385; (b) Zhang, Z-J.;
Yi, D.; Fu, Q.; Liang, W. Chen, S-Y.; Yang, L.; Du, F-T.; Ji, J-X.; Wei,
W. Tetrahedron Lett 2017, 58, 2417.
Scheme 4 Postulated reaction mechanism.
13. Liang, W.; Zhang, Z-J.; Yi, D.; Fu, Q.; Chen, S-Y.; Yang, L.; Du, F-T.;
Ji, J-X.; Wei, W. Chin. J. Chem. 2017, 35, 1378.
In summary, we have developed a new and straightforward
CuCN catalyzed method for the construction of a series of β-
ketophosphine oxides from alkenes, H-phosphine oxides and
dioxygen. The present protocol has the advantages of operation
simplicity, high atom efficiency, as well as ready availability of
materials and catalyst. Radical capture and isotope labeling
experiments showed that this reaction might proceed through a
radial process and carbonyl oxygen atom of β-ketophosphine
oxides originated from dioxygen. Further studies of the detailed
mechanism of this process and its application are underway in
our laboratory.
14. Selective examples: (a) Schmidt, V. A.; Alexanian, E. J. J. Am. Chem.
Soc. 2011, 133, 11402; (b) Xue, Q. C.; Xie, J.; Zhu, C. J. Acs Catalysis.
2013, 3, 1365; (c) Wang, Y.; Zhang, L.; Yang, Y. H.; Zhang, P.; Du, Z.
T.; Wang, C. Y. J. Am. Chem. Soc. 2013, 135, 18048; (d) Zhou, M. B.;
Wang, C. Y.; Song, R. J.; Liu, Y.; Wei, W. T.; Li, J. H. Chem.
Commun. 2013, 49, 10817; (e) Oh, S. H.; Malpani, Y. R.; Ha, N.; Jung,
Y. S.; Han, S. B. Org. Lett. 2014, 16, 1310; (f) Wei, W.; Wen, J.; Yang,
D.; Du, J.; You, J.; Wang, H. Green Chem. 2014, 16, 2988; (g) Wei,
W.; Wen, J.; Yang, D.; Liu, X.; Guo, M.; Dong, R.; Wang, H. J. Org.
Chem. 2014, 79, 4225.
15. Zhang, G-Y.; Li, C-K.; Li, D-P.; Zeng, R-S.; Shoberu, A.; Zou, J-P.
Tetrahedron, 2016, 72, 2972.
16. Chen, X.; Chen, X.; Li, X.; Qu, C.; Qu, L.; Bi, W.; Sun, K.; Zhao, Y.
Tetrahedron 2017, 73, 2439.
17. (a) Grotjahn, D. B.; Brewster, M. A.; Ziurys, L. M. J. Am. Chem. Soc.
2002, 124, 5895; (b) Kunishita, A.; Ishimaru, H.; Nakashima, S.; Ogura,
T.; Itoh, S. J. Am. Chem. Soc. 2008, 130, 4244; (c) Wei, W.; J. X. Ji
Angew. Chem., Int. Ed., 2011, 50, 9097; (d) Wei, W.; Liu, C.; Yang,
D.; Wen, J.; You, J.; Suo, Y.; Wang, H. Chem. Commun. 2013, 49,
10239; (e) Liu, C.; Zhu, M.; Wei, W.; Yang, D.; Cui, H.; Liu, X.; Wang,
H. Org. Chem. Front. 2015, 2, 1356; (f) Li, M.-S.; Zhang, Q.; Hu, D.-
Y.; Zhong, W.-W.; Cheng, M.; Ji, J.-X. Wei, W. Tetrahedron Lett 2016,
57, 2642.
Acknowledgements
This work was supported by the Opening Project of Key
Laboratory at Universities of Education Department of Xinjiang
Uygur Autonomous Region (No. 2018YSHXZD01).
References and notes
1. For selected examples, see: (a) Fox, D. J.; Pedersen, D. S.; Warren, S.
Chem.Commun. 2004, 22, 2598; (b) Fox, D. J.; Pedersen, D. S.; Warren,
S. Org. Biomol. Chem. 2006, 4, 3102; (c) Murai, M.; Nakamura, M.;
Takai, K. Org. Lett. 2014, 16, 5784; (d) Lawrence, N. J.; Muhammad,
F. Tetrahedron. 1998, 54, 15345; (e) González-Nogal, A. M.;
Cuadrado, P.; Sarmentero, M. A. Eur. J. Org. Chem. 2009, 6, 850; (f)
Clarke, C.; Foussat, S.; Fox, D. J.; Pedersenc, D. S.; Warrena, S. Org.
Biomol. Chem. 2009, 7, 1323; (g) Khalladi, K.; Touil, S. Phosphorus,
Sulfur, and Silicon. 2013, 188, 711; (h) Boesen, T.; Fox, D. J.;
Galloway, W.; Pedersen, D. S.; Tyzack, C. R.; Warren, S. Org. Biomol.
Chem. 2005, 3, 630.
2. (a) Hutton, G.; Jolliff, T.; Mitchel, H.; Warren, S. Tetrahedron Lett.
1995, 36, 7905; (b) Buss, A. D.; Cruse, W. B.; Kennard, O.; Warren, S.
J. Chem. Soc. Perkin Trans. 1 1984, 243; (c) A. D. Buss, S. Warren,J.