J. Hudák et al. / Polyhedron 30 (2011) 1367–1373
1373
this energy gap Dax enters the formula D ¼ k2½A2j2
=
[2] O. Sahin, O. Buyukgungor, D.A. Kose, E.F. Ozturkkan, H. Necefoglu, Acta
Crystallogr., Sect. C 63 (2007) m243 (HIFMUF, HIQTOR).
[3] N. Caylak, T. Hökelek, H. Necefoglu, Acta Crystallogr., Sect. E 63 (2007) m1341
(HIFMUF01).
[4] N. Caylak, T. Hökelek, F.E. Ozturkkan, H. Necefoglu, Acta Crystallogr., Sect. E 63
(2007) m1344 (YICNII).
[5] T. Hökelek, N. Caylak, H. Necefoglu, Acta Crystallogr., Sect. E 63 (2007) m1873
(EDUSEC).
[6] T. Hökelek, H. Necefoglu, Acta Crystallogr., Sect. C 54 (1998) 1242 (PELLEX).
[7] Pei-Zheng Zhao, Xiao-Peng Xuan, Qing-Hu Tang, Acta Crystallogr., Sect. E 64
(2008) m327. GISKUP.
4
4
Daxð A2g ! EgÞꢄ where the Figgis CI parameter in the weak crystal
field limit is A = 3/2, and
j
ꢅ 0.7–0.9 is the orbital reduction factor
[37]. Then the estimate for the axial crystal-field splitting parame-
ter is Dax ¼ A2
j
2k2=D, i.e. 453 and 789 cmꢀ1 for 1 and 3, respec-
4
tively. The value of Dax splits not only the ground T1gðFÞ term
but also the excited 4T1gðPÞ term. Thus the large value of Dax ratio-
nalizes the evident splitting of the D3 transition in the electronic
spectrum of 3.
[8] L.V. Lukashuk, A.B. Lysenko, E.B. Rusanov, A.N. Chernega, K.V. Domasevitch,
Acta Crystallogr., Sect. C 63 (2007) m140 (LICBIJ).
[9] J. Catterick, M.B. Hursthouse, P. Thornton, A.J. Welch, J. Chem. Soc., Dalton
Trans. (1977) 223 (BZQUCO10).
4. Conclusions
[10] J.E. Davies, A.V. Rivera, G.M. Sheldrick, Acta Crystallogr., Sect. B 33 (1977) 156
(BZMQCO).
[11] A. Karmakar, R.J. Sarma, J.B. Baruah, Polyhedron 26 (2007) 1347 (YOLZAB,
YOLZEF).
[12] A.P. Gulya, S.G. Shova, G.V. Novitsky, M.D. Mazus, Koord. Khim. 20 (1994) 111
(WEMVAL).
[13] D. Lee, Pei-Lin Hung, B. Spingler, S.J. Lippard, Inorg. Chem. 41 (2002) 521
(IDOLUI, IDOMAP, IDOMET).
[14] K.S. Gavrilenko, S.V. Punin, O. Cador, S. Golhen, L. Ouahab, V.V. Pavlishchuk, J.
Am. Chem. Soc. 127 (2005) 12246 (DAVYAB).
[15] K.S. Gavrilenko, Y. Le Gal, O. Cador, S. Golhen, L. Ouahab, Chem. Commun.
(2007) 280 (QEXFEF).
[16] J. Catterick, M.B. Hursthouse, D.B. New, P. Thornton, Chem. Commun. (1974)
843 (QUCOBZ).
[17] C.P. Raptopoulou, V. Psycharis, Inorg. Chem. Commun. 11 (2008) 1194
(XOHLIQ).
[18] M. Spohn, J. Strahle, Z. Naturforsch. B43 (1988) 540 (FOXHIJ10).
[19] K.S. Gavrilenko, S.V. Punin, O. Cador, S. Golhen, L. Ouahab, V.V. Pavlishchuk, J.
Am. Chem. Soc. 127 (2005) 12246 (FOXHIJ11).
[20] R.C. Clark, J.S. Reid, Acta Crystallogr., Sect. A 51 (1995) 887.
[21] Oxford Diffraction, CrysAlisPro, Oxford Diffraction Ltd., Abingdon, England,
2009.
[22] A. Altomare, M.C. Burla, M. Camalli, G.L. Cascarano, C. Giacovazzo, A.
Guagliardi, A.G.G. Moliterni, G. Polidori, R. Spagna, J. Appl. Crystallogr. 32
(1999) 115.
Three Co(II) complexes containing benzoato ligands and pyri-
dine-type N-donor ligands (nicotinamide, quinoline, and iso-nico-
tinamide) have been prepared and structurally characterized. The
magnetic data (susceptibility and magnetization) were fitted using
the spin Hamiltonian that accounts to the spin Zeeman term, the
axial zero-field splitting and the isotropic exchange interaction
(for the dinuclear and trinuclear complex, respectively). It was
found that these complexes exhibit very large magnetic anisotropy
that manifests itself in the g-factor asymmetry (gx >> gz) and a siz-
able axial zero-field splitting parameter D (94, 67, and 57 cmꢀ1 for
1 through 3). This effect is caused by the tetragonal splitting Dax of
4
4
the ground crystal-field term 4T1gðOhÞ into f A2g þ EggðD4hÞ terms.
The spin–orbit coupling then yields the crystal-field multiplets
4A2gðD4hÞ ! fC6
þ
C7gðD0 Þ; these Kramers doublets are separated
4
just by the amount 2D. The spin Hamiltonian formalism offers a
4
4
relationship D ꢅ 1=Daxð A2g ! EgÞ which rationalizes why with
the increased tetragonal splitting the D-value decreases (valid for
hexacoordinate d7 systems).
[23] G.M. Sheldrick, Acta Crystallogr. A64 (2008) 112.
[24] C.F. Macrae, P.R. Edgington, P. McCabe, E. Pidcock, G.P. Shields, R. Taylor, M.
Towler, J. van de Streek, J. Appl. Crystallogr. 39 (2006) 453.
[25] T. Hökelek, H. Necefoglu, Acta Crystallogr., Sect. C 55 (1999) 1438.
[26] O. Sahin, O. Buyukgungor, D.A. Kose, H. Necefoglu, Acta Crystallogr., Sect. C 64
(2008) m317.
[27] T. Hökelek, H. Necefoglu, Anal. Sci. 15 (1999) 1043.
[28] H. Necefoglu, Ö. Aybirdi, B. Tercan, E. Ermis, T. Hökelek, Acta Crystallogr., Sect.
E 66 (2010) m448.
Acknowledgments
Slovak grant agencies (VEGA 1/1005/09, 1/0052/11, APVV-
0202-10 and VVCE-0004-07) are acknowledged for the financial
support.
[29] J. Bernstein, R.E. Davis, L. Shimoni, N.-L. Chang, Angew. Chem., Int. Ed. Engl. 34
(1995) 1555.
Appendix A. Supplementary data
[30] N. Benbellat, K.S. Gavrilenko, Y. Le Gal, O. Cador, S. Golhen, A. Gauasmia, J.-M.
Fabre, L. Ouahab, Inorg. Chem. 45 (2006) 10440.
CCDC 804191, 804192, and 804193 contain the supplementary
crystallographic data for 1, 2, and 3. These data can be obtained
ing.html, or from the Cambridge Crystallographic Data Centre, 12
Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033;
or e-mail: deposit@ccdc.cam.ac.uk. Supplementary data associated
with this article can be found, in the online version, at doi:10.1016/
[31] Y. Cui, F. Zheng, J. Huang, Acta Crystallogr., Sect. C 55 (1999) 1067.
[32] M.A. Golubnichaya, A.A. Sidorov, I.G. Fomina, L.T. Eremenko, S.E. Nefedov, I.L.
Eremenko, I.I. Moiseev, Russ. J. Inorg. Chem. 44 (1999) 1401.
[33] E.V. Pakhmutova, A.E. Malkov, T.B. Mikhailova, A.A. Sidorov, I.G. Fomina, G.G.
Aleksandrov, V.M. Novotortsev, V.N. Ikorskii, I.L. Eremenko, Russ. Chem. Bull.
52 (2003) 2117.
[34] T. Hökelek, E.G. Sag˘lam, B. Tercam, Ö. Aybirdi, H. Necefog˘lu, Acta Crystallogr.,
Sect. E 67 (2011) m28.
ˇ
[35] R. Boca, Theoretical Foundations of Molecular Magnetism, Elsevier,
Amsterdam, 1999.
ˇ
[36] R. Boca, Coord. Chem. Rev. 248 (2004) 757.
References
ˇ
[37] R. Boca, Struct. Bonding 117 (2006) 1.
[1] T. Hökelek, H. Necefog˘lu, Acta Crystallogr., Sect. C 55 (1999) 545 (HIQGET).