1846
G. Georgakopoulou et al.
LETTER
(8) Camacho, M. B.; Clark, A. E.; Liebrecht, T. A.; DeLuca, J.
P. J. Am. Chem. Soc. 2000, 122, 5210.
References and Notes
(1) Undergraduate Research Participant, Spring 1997.
(2) Undergraduate Research Participant, Spring 2001.
(3) Koser, G. F. In The Chemistry of Functional Groups,
Supplement D; Wiley: New York, 1983, Chap. 18.
(4) (a) Varvoglis, A. The Organic Chemistry of
(9) Representative Experimental Procedure. Synthesisof 5a:
A mixture of iodonium ylide 2 (0.5 g, 1.50 mmol), styrene
4a (1.0 g, 9.62 mmol) and catalytic amounts (0.1 mol%) of
Rh2(OAc)4 was heated at 120 °C for 1 min. The reaction
mixture was subjected to column chromatography (silica
gel, CH2Cl2) to afford 5a6b (0.28 g, 80%) as colorless oil. IR
(neat): = 3010, 2940, 1720, 1430, 1328, 1270, 1210, 1190,
1175, 1125cm–1; 1H NMR (250 MHz, CDCl3): = 1.68–1.75
(m, 1 H), 2.15–2.20 (m, 1 H), 3.18–3.23 (m, 1 H), 3.34 (s, 3
H), 3.77 (s, 3 H), 7.16–7.25 (m, 5 H); 13C NMR (63 MHz,
CDCl3): = 19.0, 32.4, 37.2, 52.0, 52.7, 127.3, 127.5, 128.4,
134.6, 166.9, 170.1. Synthesis of 7a: A mixture of iodonium
ylide 2 (0.5 g, 1.50 mmol), 6,6-dimethylfulvene 6d (1.0 g,
9.43 mmol) and catalytic amounts (0.1 mol%) of Rh2(OAc)4
was heated at 80–85 °C for 5 min. The reaction mixture was
subjected to column chromatography (silica gel, CH2Cl2) to
afford 7d (0.25 g, 71%) as yellow oil. 1H NMR (250 MHz,
CDCl3). = 1.80 (s, 3 H), 1.89 (s, 3 H), 2.94 (dd, J = 2.2, 6.1
Hz, 1 H), 3.02 (d, J = 6.1 Hz, 1 H), 3.56 (s, 3 H), 3.70 (s, 3
H), 5.90–5.94 (m, 1 H), 6.13 (d, J = 5.4 Hz, 1 H); 13C NMR
(63 MHz, CDCl3): = 21.2, 22.0, 34.4, 38.6, 43.3, 52.0,
52.6, 130.2, 130.5, 132.7, 135.9, 166.0.
Polycoordinated Iodine; VCH Publishers: New York, 1992.
(b) Varvoglis, A. Hypervalent Iodine in Organic Synthesis;
Academic Press: London, 1997. (c) Moriarty, R. M.; Vaid,
R. K. Synthesis 1990, 431.
(5) For a general synthesis of -dicarbonyl iodonium ylides, see:
Schank, K.; Lick, C. Synthesis 1983, 393.
(6) (a) Müller, P.; Fernandez, D.; Nury, D.; Rossier, J.-C. J.
Phys. Org. Chem. 1998, 11, 321. (b) Müller, P.; Fernandez,
D. Helv. Chim. Acta 1995, 78, 947. (c) Müller, P.; Bolea, C.
Synlett 2000, 826. (d) Müller, P.; Bolea, C. Helv. Chim. Acta
2001, 84, 1093. (e) Moriarty, R. M.; May, E. J.; Prakash, O.
Tetrahedron Lett. 1997, 38, 4333. (f) Moriarty, R. M.;
Prakash, O.; Vaid, R. K.; Zhao, L. J. Am. Chem. Soc. 1989,
111, 6443. (g) Moriarty, R. M.; Kim, J.; Guo, L.
Tetrahedron Lett. 1993, 34, 4129. (h) Moriarty, R. M.;May,
E. J.; Guo, L.; Prakash, O. Tetrahedron Lett. 1998, 39, 765.
(i) Spyroudis, S.; Tarantili, P. J. Org. Chem. 1993, 58, 4885.
(j) Gallos, J. K.; Koftis, T. V.; Koumbis, A. E. J. Chem. Soc.,
Perkin Trans. 1 1994, 611. (k) Hayasi, Y.; Okada, T.;
Kawanisi, M. Bull. Chem. Soc. Jpn. 1970, 43, 2506.
(7) (a) Hadjiarapoglou, L. P. Tetrahedron Lett. 1987, 28, 4449.
(b) Asouti, A.; Hadjiarapoglou, L. P. Tetrahedron Lett.
1998, 39, 9073. (c) Alexiou, I.; Gogonas, E. P.;
(10) Jones, M. Jr.; Kulczycki, A. Jr.; Hummel, K. F. Tetrahedron
Lett. 1966, 183.
(11) Davies, H. M. L.; Stafford, D. G.; Doun, B. D.; Houser, J. H.
J. Am. Chem. Soc. 1998, 120, 3326.
Hadjiarapoglou, L. P. Synlett 1999, 1925. (d) Gogonas, E.
P.; Hadjiarapoglou, L. P. Tetrahedron Lett. 2000, 41, 9299.
Synlett 2001, No. 12, 1843–1846 ISSN 0936-5214 © Thieme Stuttgart · New York