1237
T. Matsuda et al.
Letter
Synlett
(3) (a) Hayashi, T.; Inoue, K.; Taniguchi, N.; Ogasawara, M. J. Am.
Chem. Soc. 2001, 123, 9918. (b) Miura, T.; Sasaki, T.; Nakazawa,
H.; Murakami, M. J. Am. Chem. Soc. 2005, 127, 1390. (c) Shintani,
R.; Okamoto, K.; Hayashi, T. J. Am. Chem. Soc. 2005, 127, 2872.
(d) Yamabe, H.; Mizuno, A.; Kusama, H.; Iwasawa, N. J. Am.
Chem. Soc. 2005, 127, 3248. (e) Shintani, R.; Hayashi, T. Org. Lett.
2005, 7, 2071. (f) Shintani, R.; Tsurusaki, A.; Okamoto, K.;
Hayashi, T. Angew. Chem. Int. Ed. 2005, 44, 3909. (g) Miura, T.;
Shimada, M.; Murakami, M. Chem. Asian J. 2006, 1, 868.
(h) Shintani, R.; Takatsu, K.; Hayashi, T. Angew. Chem. Int. Ed.
2007, 46, 3735. (i) Shintani, R.; Takatsu, K.; Katoh, T.; Nishimura,
T.; Hayashi, T. Angew. Chem. Int. Ed. 2008, 47, 1447. (j) Seiser, T.;
Roth, O. A.; Cramer, N. Angew. Chem. Int. Ed. 2009, 48, 6320.
(k) Shigeno, M.; Yamamoto, T.; Murakami, M. Chem. Eur. J. 2009,
15, 12929. (l) Seiser, T.; Cramer, N. Chem. Eur. J. 2010, 16, 3383.
(m) Shintani, R.; Isobe, S.; Takeda, M.; Hayashi, T. Angew. Chem.
Int. Ed. 2010, 49, 3795. (n) Seiser, T.; Cathomen, G.; Cramer, N.
Synlett 2010, 1699. (o) Shintani, R.; Hayashi, T. Org. Lett. 2011,
13, 350. (p) Ishida, N.; Nečas, D.; Shimamoto, Y.; Murakami, M.
Chem. Lett. 2013, 42, 1076. (q) Matsuda, T.; Watanuki, S. Org.
Biomol. Chem. 2015, 13, 702.
(9) Gallego, G. M.; Sarpong, R. Chem. Sci. 2012, 3, 1338.
(10) Substrates and were synthesized by the Horner–
1
4
Wadsworth–Emmons reaction of the corresponding ketones,
which were prepared according to the literature methods.
(11) (a) Zhang, N.; Hoffman, D. J.; Gutsche, N.; Gupta, J.; Percec, V.
J. Org. Chem. 2012, 77, 5956. (b) Lennox, A. J. J.; Lloyd-Jones, G.
C. Chem. Soc. Rev. 2014, 43, 412.
(12) (E)-Methyl 5-[2-(5,5-dimethyl-1,3,2-dioxaborinan-2-yl)phe-
nyl]-3-phenylpent-2-enoate (4a): White solid; mp 104–105
°C; 1H NMR (CDCl3, 301 MHz): δ = 0.98 (s, 6 H), 3.01–3.09 (m, 2
H), 3.31–3.40 (m, 2 H), 3.65 (s, 4 H), 3.78 (s, 3 H), 6.08 (s, 1 H),
7.15–7.22 (m, 1 H), 7.32–7.42 (m, 5 H), 7.51–7.57 (m, 2 H),
7.71–7.76 (m, 1 H). 13C NMR (CDCl3, 75.6 MHz): δ = 21.8, 31.5,
34.8, 35.2, 51.1, 72.0, 116.9, 125.1, 126.9, 128.4, 128.7, 129.9,
130.3, 134.8, 141.6, 147.6, 160.8, 166.7. HRMS (ESI) calcd for
C
23H27BNaO4 [M + Na]+ 401.1895; found: 401.1895. IR: 2960,
1712, 1301, 1161, 766 cm−1
.
General Procedure for Rhodium-Catalyzed Spirocyclization
of Arylboronic Esters: To a Schlenk tube under nitrogen were
added [Rh(OH)(cod)]2 (1.2 mg, 2.6 μmol, 5 mol% Rh), 1,2-
bis(diphenylphosphino)benzene (DPPBZ, 2.3 mg, 5.2 μmol),
arylboronic ester 4 (0.100 mmol), and xylene (1.0 mL). The
solution was stirred for 5 min. at rt, and the mixture was heated
at 140 °C for 2 h. After cooling to r.t., the reaction mixture was
filtered through a plug of Florisil® washing with hexane–EtOAc
(3:1), and the filtrate was concentrated. The residue was puri-
fied by preparative TLC on silica gel (hexane–EtOAc) to afford 2.
1,1′-Spirobi[indan]-3-one (2a): According to the general pro-
cedure, 4a (37.9 mg, 0.100 mmol), [Rh(OH)(cod)]2 (1.2 mg, 2.6
μmol), and DPPBZ (2.3 mg, 5.2 μmol) were treated in xylene (1.0
mL). Purification by preparative TLC on silica gel afforded 2a
(19.7 mg, 0.084 mmol, 84%) as a colorless oil. 1H NMR (CDCl3,
300 MHz): δ = 2.37 (ddd, J = 12.7, 7.0, 5.5 Hz, 1 H), 2.52 (dt, J =
12.8, 8.2 Hz, 1 H), 2.85 (d, J = 18.9 Hz, 1 H), 3.00 (d, J = 18.9 Hz, 1
H), 3.10–3.20 (m, 2 H), 6.78 (d, J = 7.2 Hz, 1 H), 7.14 (dt, J = 0.8,
7.4 Hz, 1 H), 7.21 (dd, J = 7.3, 1.0 Hz, 1 H), 7.23–7.29 (m, 1 H),
7.32 (d, J = 7.2 Hz, 1 H), 7.37–7.46 (m, 1 H), 7.54– 7.62 (m, 1 H),
7.75–7.82 (m, 1 H); 13C NMR (CDCl3, 75.5 MHz): δ = 31.3, 42.9,
52.4, 54.5, 122.8, 123.1, 124.6, 125.1, 127.2, 127.3, 127.9, 135.4,
136.1, 143.3, 148.9, 161.5, 205.7. HRMS (ESI) calcd for
(4) Matsuda, T.; Suda, Y.; Takahashi, A. Chem. Commun. 2012, 48,
2988.
(5) For analogous 1,3- and 1,5-rhodium migrations, see: (a) Tobisu,
M.; Hasegawa, J.; Kita, Y.; Kinuta, H.; Chatani, N. Chem. Commun.
2012, 48, 11437. (b) Zhang, J.; Zhao, P.; Liu, J.-F.; Ugrinov, A.;
Pillai, A. F. X.; Sun, Z.-M. J. Am. Chem. Soc. 2013, 135, 17270.
(c) Ishida, N.; Shimamoto, Y.; Yano, T.; Murakami, M. J. Am.
Chem. Soc. 2013, 135, 19103.
(6) The corresponding intermolecular reaction was reported, see
ref. 3o.
(7) For general reviews on rhodium(I)-catalyzed addition reactions
of arylboronic acids, see: (a) Hayashi, T.; Yamasaki, K. Chem. Rev.
2003, 103, 2829. (b) Miura, T.; Murakami, M. Chem. Commun.
2007, 217. (c) Youn, S. W. Eur. J. Org. Chem. 2009, 2597.
(d) Edwards, H. J.; Hargrave, J. D.; Penrose, S. D.; Frost, C. G.
Chem. Soc. Rev. 2010, 39, 2093. (e) Tian, P.; Dong, H.-Q.; Lin,
G.-Q. ACS Catal. 2012, 2, 95.
(8) (a) Lautens, M.; Mancuso, J. Org. Lett. 2002, 4, 2105. (b) Lautens,
M.; Mancuso, J. J. Org. Chem. 2004, 69, 3478. (c) Shintani, R.;
Okamoto, K.; Hayashi, T. Chem. Lett. 2005, 34, 1294. (d) Miura,
T.; Murakami, M. Org. Lett. 2005, 7, 3339. (e) Matsuda, T.;
Makino, M.; Murakami, M. Chem. Lett. 2005, 34, 1416.
(f) Matsuda, T.; Shigeno, M.; Makino, M.; Murakami, M. Org.
Lett. 2006, 8, 3379. (g) Tseng, N.-W.; Lautens, M. J. Org. Chem.
2009, 74, 1809. (h) Shimizu, H.; Igarashi, T.; Murakami, M. Bull.
Korean Chem. Soc. 2010, 31, 1461. (i) Gourdet, B.; Rudkin, M. E.;
Lam, H. W. Org. Lett. 2010, 12, 2554. (j) Low, D. W.; Pattison, G.;
Wieczysty, M. D.; Churchill, G. H. Org. Lett. 2012, 14, 2548.
(k) Yu, Y.-N.; Xu, M.-H. J. Org. Chem. 2013, 78, 2736.
C
17H14NaO [M + Na]+ 257.0937; found: 257.0937. IR: 2948,
1716, 1602, 1236, 758 cm–1
.
(13) Asymmetric reaction: 4a (37.8 mg, 0.100 mmol),
[Rh(OH)(cod)]2 (1.1 mg, 2.4 μmol), and (R)-BINAP (3.1 mg, 5.0
μmol) were reacted in xylene (1.0 mL) at 140 °C. Purification by
preparative TLC on silica gel yielded 2a (10.1 mg, 0.043 mmol,
43%); 52% ee determined by HPLC analysis (CHIRALCEL® OJ-H
column, hexane–i-PrOH (90:10), 1.0 mL/min, tminor = 7.7 min,
tmajor = 10.0 min).
© Georg Thieme Verlag Stuttgart · New York — Synlett 2015, 26, 1233–1237