Communication
ChemComm
T. Hiramatsu, E. Tokunaga, T. Dohi, Y. Kita and N. Shibata, Chem.
Sci., 2014, 5, 2754.
(b) R. J. Carson, L. E. E. Fader, S. Kawai, S. Landry, Y. S. Tsantrizos,
C. Brochu, S. Morin, M. Parisien and B. Simoneau, WO Pat., WO2009/
062288 A1, 2009; (c) P. Jeschke, R. Velten, M. Schindler, F. A. Muehltau,
A. Voerste and U. Goergens, WO Pat., WO2009/141096 A1, 2009;
(d) J. L. Andreassi II and A. E. Taggi, WO Pat., WO2011/059619 A1,
2011; (e) C. W. Am Ende, B. A. Fish, M. E. Green, D. S. Johnson,
P. Mullins, B. C. O’Donnell, J. M. Pettersson, Y. C. Stiff, M. C.
Subramanyam, T. P. Tran and T. Navaratnam, WO Pat., WO2012/
131539 A1, 2012; ( f ) W. Li, P. De Croos, K. R. Fandrick, J. J. Gao,
N. Haddad, Z.-H. Lu, B. Qu, S. Rodriguez, H. Senanayake Chris, Y. Zhang
and W. Tang, WO Pat., WO2012/138670 A1, 2012; (g) K. Hattori,
N. Kurihara, T. Iwaki, T. Inoue, T. Akiyama and Y. Hasegawa, WO
Pat., WO2013/002357 A1, 2013; (h) B. H. Brown, X. Wang, K. R. Fandrick,
J. J. Gao, N. Haddad, S. R. Landry, W. Li, Z.-H. Lu, B. Qu, D. C. Reeves,
C. Thibeault and Y. Zhang, US Pat., US2014/0094609 A1, 2014;
(i) M. Yousaf, H. Huang, P. Li, C. Wang and Y. Yang, ACS Chem.
Neurosci., 2017, 8, 1368; ( j) J. Mulcahy, H. Pajouhesh, A. Delwig,
J. Beckley, G. M. Shibuya, J. Du Bois and G. Miljanich, WO Pat.,
WO2018/183781 A1, 2018.
8 (a) W. Carpenter, J. Org. Chem., 1966, 31, 2688; (b) A. Gregorcic and
M. Zupan, Bull. Chem. Soc. Jpn., 1977, 50, 517; (c) T. B. Patrick,
J. J. Scheibel, W. E. Hall and Y. H. Lee, J. Org. Chem., 1980, 45, 4492;
(d) S. Hara, J. Nakahigashi, K. Ishi-i, M. Sawaguchi, H. Sakai,
T. Fukuhara and N. Yoneda, Synlett, 1998, 495; (e) M. Sawaguchi,
S. Hara and N. Yoneda, J. Fluorine Chem., 2000, 105, 313.
9 (a) J. Tao, R. Tran and G. K. Murphy, J. Am. Chem. Soc., 2013,
135, 16312; (b) E. Emer, J. Twilton, M. Tredwell, S. Calderwood,
T. L. Collier, B. Liegault, M. Taillefer and V. Gouverneur, Org. Lett.,
2014, 16, 6004; (c) Y. Zhou, Y. Zhang and J. Wang, Org. Biomol.
Chem., 2016, 14, 10444; (d) G. S. Sinclair, R. Tran, J. Tao, W. S.
Hopkins and G. K. Murphy, Eur. J. Org. Chem., 2016, 4603;
(e) Z. Zhao, K. G. Kulkarni and G. K. Murphy, Adv. Synth. Catal.,
2017, 359, 2222. For a review on HVI-mediated fluorination of diazo
compounds see; ( f ) S. V. Kohlhepp and T. Gulder, Chem. Soc. Rev.,
2016, 45, 6270.
10 (a) M. Sawaguchi, S. Hara, T. Fukuhara and N. Yoneda, J. Fluorine
Chem., 2000, 104, 277. For a review on HVI-mediated alkene 17 b,b-Difluorides have been prepared via deoxyfluorination, but such
difunctionalization see; (b) J. H. Lee, S. Choi and K. B. Hong,
Molecules, 2019, 24, 2634.
11 Z. Zhao, L. Racicot and G. K. Murphy, Angew. Chem., Int. Ed., 2017,
56, 11620.
reactions are both rare and low yielding. For example, see;
(a) M. Hudlick´y, Organic Reactions, 2004, p. 513. A single example
of a fluorinative rearrangement accessing 3 has also been reported;
´
(b) N. O. Ilchenko and K. J. Szabo, J. Fluorine Chem., 2017, 203, 104.
12 (a) S. Hara, J. Nakahigashi, K. Ishi-i, T. Fukuhara and N. Yoneda, 18 For additional examples of HVI reagents reacting with allenes see;
Tetrahedron Lett., 1998, 39, 2589; (b) L. F. Silva Jr., Molecules, 2006,
11, 421; (c) Y.-C. Han, Y.-D. Zhang, Q. Jia, J. Cui and C. Zhang, Org.
Lett., 2017, 19, 5300.
(a) R. M. Moriarty, T. E. Hopkins, R. K. Vaid, B. K. Vaid and
S. G. Levy, Synthesis, 1992, 847; (b) N. Purkait, S. Okumura,
˜
J. A. Souto and K. Muniz, Org. Lett., 2014, 16, 4750.
´
´
13 For reviews on chiral iodoarene catalysts see; (a) A. Flores, E. Cots, 19 (a) X. Pigeon, M. Bergeron, F. Barabe, P. Dube, H. N. Frost and
`
˜
J. Berges and K. Muniz, Adv. Synth. Catal., 2019, 361, 2;
(b) S. Haubenreisser, T. H. Woste, C. Martinez, K. Ishihara and
K. Muniz, Angew. Chem., Int. Ed., 2016, 55, 413; (c) S. Ghosh,
S. Pradhan and I. Chatterjee, Beilstein J. Org. Chem., 2018, 14, 1244.
14 (a) W. Kong, P. Feige, T. de Haro and C. Nevado, Angew. Chem., Int.
Ed., 2013, 52, 2469; (b) T. Kitamura, K. Muta and J. Oyamada, J. Org.
J.-F. Paquin, Angew. Chem., Int. Ed., 2010, 49, 1123; (b) M. Bergeron,
T. Johnson and J.-F. Paquin, Angew. Chem., Int. Ed., 2011, 50, 11112;
(c) M. Bergeron, D. Guyader and J.-F. Paquin, Org. Lett., 2012,
14, 5888; (d) J. D. Hamel, M. Drouin and J. F. Paquin, J. Fluorine
Chem., 2015, 174, 81; (e) M. Drouin, S. Tremblay and J. F. Paquin,
Org. Biomol. Chem., 2017, 15, 2376.
Chem., 2015, 80, 10431; (c) S. M. Banik, J. W. Medley and 20 J. Gong, Z. Zhao, F. Zhang, S. Wu, G. Yan, Y. Quan and B. Ma, Org.
E. N. Jacobsen, Science, 2016, 353, 51; (d) S. M. Banik, J. W. Medley Lett., 2014, 16, 5524.
and E. N. Jacobsen, J. Am. Chem. Soc., 2016, 138, 5000; (e) I. G. Molnar 21 (a) J. J. Edmunds and W. B. Motherwell, J. Chem. Soc., Chem.
´
and R. Gilmour, J. Am. Chem. Soc., 2016, 138, 5004; ( f ) E. M. Woerly,
S. M. Banik and E. N. Jacobsen, J. Am. Chem. Soc., 2016, 138, 13858;
(g) J. C. Sarie, C. Thiehoff, R. J. Mudd, C. G. Daniliuc, G. Kehr and
R. Gilmour, J. Org. Chem., 2017, 82, 11792; (h) T. Kitamura, A. Miyake,
K. Muta and J. Oyamada, J. Org. Chem., 2017, 82, 11721; (i) F. Scheidt,
Commun., 1989, 1348; (b) S. Caddick, W. B. Motherwell and
J. A. Wilkinson, J. Chem. Soc., Chem. Commun., 1991, 674;
(c) S. Caddick, L. Gazzard, W. B. Motherwell and J. A. Wilkinson,
Tetrahedron, 1996, 52, 149; (d) M. F. Greaney and W. B. Motherwell,
Tetrahedron Lett., 2000, 41, 4467.
C. Thiehoff, G. Yilmaz, S. Meyer, C. G. Daniliuc, G. Kehr and 22 Electron-withdrawing groups were excluded from this study as
R. Gilmour, Beilstein J. Org. Chem., 2018, 14, 1021; ( j) T. Kitamura,
K. Yoshida, S. Mizuno, A. Miyake and J. Oyamada, J. Org. Chem., 2018,
deactivated arenes would inhibit the requisite 1,2-phenyl shift. For
an example of this effect see ref. 11.
¨
83, 14853; (k) F. Scheidt, M. Schafer, J. C. Sarie, C. G. Daniliuc, 23 (a) B. Zhou, T. Yan, X.-S. Xue and J.-P. Cheng, Org. Lett., 2016,
J. J. Molloy and R. Gilmour, Angew. Chem., Int. Ed., 2018, 57, 16431;
(l) F. Scheidt, J. Neufeld, M. Schafer, C. Thiehoff and R. Gilmour, Org.
Lett., 2018, 20, 8073; (m) T. Kitamura, S. Mizuno, K. Muta and
J. Oyamada, J. Org. Chem., 2018, 83, 2773; (n) K. M. Mennie,
S. M. Banik, E. C. Reichert and E. N. Jacobsen, J. Am. Chem. Soc.,
2018, 140, 4797; (o) R. Pluta, P. E. Krach, L. Cavallo, L. Falivene and
M. Rueping, ACS Catal., 2018, 8, 2582; (p) M. K. Haj, S. M. Banik and
18, 6128; (b) T. Yan, B. Zhou, X.-S. Xue and J.-P. Cheng, J. Org. Chem.,
´
2016, 81, 9006; (c) J. Zhang, K. J. Szabo and F. Himo, ACS Catal.,
2017, 7, 1093; (d) A. Andries-Ulmer, C. Brunner, J. Rehbein and
T. Gulder, J. Am. Chem. Soc., 2018, 140, 13034; (e) B. Zhou, M. K. Haj,
E. N. Jacobsen, K. N. Houk and X.-S. Xue, J. Am. Chem. Soc., 2018,
140, 15206; ( f ) S. Shu, Y. Li, J. Jiang, Z. Ke and Y. Liu, J. Org. Chem.,
2019, 84, 458.
E. N. Jacobsen, Org. Lett., 2019, 21, 4919; (q) J. D. Herszman, M. Berger 24 A. Sreenithya and R. B. Sunoj, Dalton Trans., 2019, 48, 4086.
and S. R. Waldvogel, Org. Lett., 2019, 21, 7893; (r) N. Erdeljac, 25 T. Okuyama, T. Takino, T. Sueda and M. Ochiai, J. Am. Chem. Soc.,
¨
K. Bussmann, A. Scholer, F. K. Hansen and R. Gilmour, ACS Med. Chem.
Lett., 2019, 10, 1336.
1995, 117, 3360.
´
26 (a) N. O. Ilchenko, B. O. Tasch and K. J. Szabo, Angew. Chem., Int. Ed.,
2014, 53, 12897; (b) A. J. Cresswell, S. G. Davies, P. M. Roberts and
J. E. Thomson, Chem. Rev., 2015, 115, 566; (c) B. Zhou, T. Yan, X.-S.
Xue and J.-P. Cheng, Org. Lett., 2016, 18, 6128; (d) N. O. Ilchenko and
K. J. Szabo, J. Fluorine Chem., 2017, 203, 104.
15 For an additional example of fluorinations mediated by 1 see;
B. Xing, C. Ni and J. Hu, Angew. Chem., 2018, 130, 10044.
16 For 3 as constituents of biologically-active entities see; (a) Y. Nakamura,
M. Morita, T. Yoneda and K. Izakura, WO Pat., WO2003/027059 A1, 2003;
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2019