ChemComm
Communication
Table 3 Selective hydrogenation of various unsaturated aldehydes over Ir–
the selective hydrogenation of crotonaldehyde. Therefore ReOx is
responsible for the promotion of substrate adsorption and the
assistance of heterolytic dissociation of H2 to H+ and HÀ species,
leading to high activity and high selectivity, respectively.
In conclusion, Ir–ReOx/SiO2 showed high activity and selectivity
in the hydrogenation of unsaturated aldehydes to unsaturated
alcohols in water at a low H2 pressure of 0.8 MPa and a low
temperature of 303 K. The gram-scale experiment at 8 MPa H2
pressure and 343 K with Ir–ReOx/SiO2 provided a record TON of
5500 and an initial TOF of up to 12 600 hÀ1 based on surface Ir
without the loss of selectivity. Various unsaturated aldehydes can
be converted to the corresponding unsaturated alcohols including
useful chemicals in high yields. This catalyst system is generated
by the synergy between Ir metal and ReOx, which provides high
selectivity while drastically raising the activity without sacrificing
the activity of noble metals.
a
ReOx/SiO2
Con-
version Yield
Selectivityb (%)
t
Entry Aldehyde
Product
(h) (%)
(%) Product AL SA
1
2
3
8
5
4
99
>99
95
90
90
87
91
90
92
0
0
2
8
9
6
4
5
6
6
96
99
89
93
96
0
0
6
95
4e
(91c )
6
7
8
6
85
91
70
88
82
97
3d 15 f
0
3g
14
8
6
6
93
80
78
80
84
0
0
Notes and references
9
>99
1
¨
1 (a) L. A. Saudan, Acc. Chem. Res., 2007, 40, 1309; (b) P. Maki-Arvela,
´
J. Hajek, T. Salmi and D. Y. Murzin, Appl. Catal., A, 2005, 292, 1;
>99
10
6
6
>99
>99
>99
>99
0
0
1
0
(c) S. Nishimura, Handbook of Heterogeneous Catalytic Hydrogenation
for Organic Synthesis, Wiley, New York, 2001.
2 (a) S. Fujita, Y. Sano, B. M. Bhanage and M. Arai, J. Catal., 2004,
225, 95; (b) A. Ghosh and R. Kumar, Microporous Mesoporous Mater.,
2005, 87, 33.
3 T. Ohkuma, H. Ooka, T. Ikariya and R. Noyori, J. Am. Chem. Soc.,
1995, 117, 10417.
4 P. J. Fagan, M. H. Voges and R. M. Bullock, Organometallics, 2010,
29, 1045.
(97c )
>99
11
(99c )
a
Reaction conditions: substrate 3.0 mmol, H2O 3.0 g, Ir–ReOx/SiO2-
1 50 mg, T = 303 K, PH = 0.8 MPa. AL = aldehyde, SA = saturated
b
2
c
d
alcohol. Isolated yield. Conjugated aldehyde (0.6%), unconjugated
e
f
aldehyde (2.4%). 3-Phenyl-1-propanol only. 4-Isopropenylcyclo-
g
hexane-1-methanol only. 3,7-Dimethyl-1-octanol (0.2%), 3,7-dimethyl-
5 (a) L. G. Melean, M. Rodriguez, A. Gonzalez, B. Gonzalez, M. Rosales
and P. J. Baricelli, Catal. Lett., 2011, 141, 709; (b) E. Farnetti,
M. Pesce, J. KaSpar, R. Spogliarich and M. Graziani, J. Chem. Soc.,
Chem. Commun., 1986, 10, 746; (c) J. S. Song, D. J. Szalda and
R. M. Bullock, Angew. Chem., Int. Ed. Engl., 1992, 31, 1233;
(d) M. Schlaf, Dalton Trans., 2006, 4645; (e) H. Guan, M. Limura,
M. P. Magee, J. R. Norton and G. Zhu, J. Am. Chem. Soc., 2005,
127, 7805.
6-octen-1-ol (2.8%).
Ir–ReOx/SiO2-1 provided the corresponding allyl alcohols with
high selectivity at high aldehyde conversion (entries 1–7). Note
that cinnamyl alcohol (entry 5), peril alcohol (entry 6) and a
mixture of nerol and geraniol (entry 7), which are important
components of fragrance and flavor compounds, were obtained
in high yields. Unconjugated unsaturated aldehydes reacted to
afford the corresponding esters with high selectivity (entries 8
and 9). Furfural and 5-hydroxymethyl furfural that are important
intermediates from biomass were also hydrogenated to the
corresponding furfuryl alcohols in excellent yields (entries 10
and 11). Therefore, the present catalytic system is practically
promising in the production of important chemicals such as
fragrance or flavor compounds.
6 F. Ammari, C. Milone and R. Touroude, J. Catal., 2005, 235, 1.
7 E. Galloway, M. Arbruster, K. Kovnir, M. S. Tikhov and
R. M. Lambert, J. Catal., 2009, 261, 60.
8 (a) J. K. A. Clarke, Chem. Rev., 1975, 75, 291; (b) R. Ferrando,
J. Jellinek and R. Johnston, Chem. Rev., 2008, 108, 845.
9 (a) P. Claus, Appl. Catal., A, 2005, 291, 222; (b) A. K. Prashar,
S. Mayadevi and R. N. Devi, Catal. Commun., 2012, 28, 42.
10 (a) A. Dandekar and M. A. Vannice, J. Catal., 1999, 183, 344;
(b) M. Consonni, D. Jokic, D. Y. Murzin and R. Touroude,
J. Catal., 1999, 188, 165; (c) P. Concepcion, A. Corma, J. Silvestre-
Albero, V. Franco and J. Y. Chane-Ching, J. Am. Chem. Soc., 2004,
126, 5523.
11 P. Claus, Top. Catal., 1998, 5, 51.
To clarify the role of ReOx species, the rate dependence on 12 (a) K. Taniya, H. Jinno, M. Kishida, Y. Ichihashi and S. Nishiyama,
J. Catal., 2012, 288, 84; (b) T. Mitsudome, M. Matoba, T. Mizugaki,
K. Jitsukawa and K. Kaneda, Chem.–Eur. J., 2013, 19, 5255;
(c) E. Gebauer-Henke, J. Grams, E. Szubiakiewicz, J. Farbotko,
the substrate concentration was studied. The reaction order
with respect to crotonaldehyde concentration was +0.03 and
+0.59 for Ir–ReOx/SiO2-1 and Ir/SiO2, respectively (Fig. S5, ESI†),
indicating that the substrate is more strongly adsorbed on the
surface of Ir–ReOx/SiO2-1 and this tendency is interpreted by
ReOx as the adsorption site of substrates. Probably the substrate
was adsorbed on ReOx sites at the oxygen atom of CQO. In
addition, we reported that the Ir–ReOx/SiO2 catalyst can dissociate
H2 into H+ and HÀ on the interface between Ir metal and ReOx
species.13 Considering that ionic hydrogen species are effective in
hydrogenation of polarized double bonds,3–5 the heterolytically
dissociated hydrogen species on Ir–ReOx/SiO2 will be effective in
R. Tourude and J. Rynkowski, J. Catal., 2007, 250, 195; (d) P. G.
N. Mertens, P. Vandezande, X. Ye, H. Poelman, I. F. J. Vankelecom
and D. E. De Vos, Appl. Catal., A, 2009, 355, 176.
13 (a) Y. Amada, Y. Shinmi, S. Koso, T. Kubota, Y. Nakagawa and
K. Tomishige, Appl. Catal., B, 2011, 105, 117; (b) Y. Amada,
H. Watanabe, M. Tamura, Y. Nakagawa, K. Okumura and
K. Tomishige, J. Phys. Chem. C, 2012, 116, 23503; (c) K. Chen,
K. Mori, H. Watanabe, Y. Nakagawa and K. Tomishige, J. Catal.,
2012, 294, 171; (d) K. Chen, S. Koso, T. Kubota, Y. Nakagawa and
K. Tomishige, ChemCatChem, 2010, 2, 547; (e) Y. Nakagawa,
Y. Shinmi, S. Koso and K. Tomishige, J. Catal., 2010, 272, 191.
14 Initial TOF was estimated under the conditions under which the
conversion was below 30%.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun.