C O M M U N I C A T I O N S
Scheme 3 a
selectivity. Importantly, this transformation is achieved in the
absence of other stereodirecting functionalities. This report also
establishes that chiral spirodiepoxides can be prepared and ma-
nipulated on gram scale.13 Coupled with the two-step assembly of
all the carbon atoms of the targeted substructure, this method is a
highly efficient, flexible, and modular synthesis of highly func-
tionalized ketones and their derivatives. In addition to disclosing
the selective reaction of a spirodiepoxide in the presence of a
mesylate and several new and diverse reactions of spirodiepoxides
(e.g. formation of ortho ester 14, oxazoline 15, and azido epoxide
22), we have completed the synthesis of epoxomicin in an overall
yield of 26% from 23 (20% including all steps). This route should
also provide new epoxomicin analogues with improved activity and
selectivity. Issues such as the scope of compatible functional groups
and nucleophiles, control of regioselective nucleophilic addition,
stereoselective oxidation of the allene precursors, and elucidation
and exploitation of the mechanisms of spirodiepoxide opening are
under investigation.
a Reagents and conditions: (i) (-)-N-methylephedrine, Zn(OTf)2, Et3N,
toluene, rt, 2 h, TBSOCH2CCH then 23 14 h, 93%, >95% ee; (ii) a. MsCl,
Et3N, DCM, -65 to 23 °C, 2 h; b. MeMgBr, CuBr, LiBr, THF/tert-butyl
ether, -65 to 23 °C, 2 h, 91%; (iii) a. DMDO, -40 to 23 °C, 1.5 h; b.
Bu4NN3, CHCl3, -20 to 23 °C, 1 h, 73% (3:1 dr); c. 10% Pd/C, H2,
(Boc)2O‚K2CO3, EtOAc, rt, 12 h, 91%; d. TFA, 0 °C, 13 min; (iv) a. 26,
HCl‚Ile-OMe, DCC, HOBT, Et3N, DMF, 0 to 23 °C, 12 h, 93%; b. 25%
TFA-DCM, 10 to 23 °C, 40 min; c. TEA, Ac2O, DMAP, DCM, 0 to 23
°C, 3 h, 95%; d. 5% NaOH, MeOH-H2O, rt, 2 h, 99%; e. 27, DCC, HOBT,
DCM-DMF, rt, 3 h, 92%; f. 10% Pd/C, H2, MeOH, rt, 2 h, 100%; (v) 25,
DIEA, DCC, HOBT, DCM-DMF, rt, 4 h, 86%; (vi) a. TBAF, THF, 0 to
23 °C, 1 h, 89%; b. MsCl, DIEA, DCM, -40 to 23 °C, 1 h; c. K2CO3,
THF-H2O, rt, 3 h, 93%; d. TFA, 0 to 23 °C, 20 min, 88%.
Acknowledgment. Financial support by Merck & Co., Johnson
& Johnson (Discovery Award), donors of the American Chemical
Society Petroleum Research Fund, Graduate Assistance in Areas
of National Need (fellowship to S.D.L.), and Rutgers, The State
University of New Jersey is gratefully acknowledged. We thank
Prof. Spencer Knapp for stimulating discussions and critical reading
of the manuscript.
Supporting Information Available: Synthetic methods and char-
acterization data. This material is available free of charge via the Internet
advanced. Amines related to 19, however, were stable to manipula-
tion leading to 1, as described below.
The optimized synthesis of epoxomicin is presented in Scheme
3. Isovaleraldehyde was subjected to asymmetric alkynylation10 to
form 24 (93% yield, >95% ee). The alcohol was converted to the
mesylate and subsequently transformed into allene 6 upon copper-
mediated11 SN2′ displacement (91%). As described above, treatment
of 6 with DMDO12 followed by exposure to azide smoothly
produced 19 (>95% er) in 73% yield (3:1 ratio of separable
diastereomers). In situ reduction/protection (91%) and then treat-
ment with acid converted the major azido alcohol to the stable crude
amine salt (25) ready for peptide coupling. DCC-promoted coupling
of 26 with methyl isoleucinate (93%), Boc removal and acetylation
(95%), saponification (99%), coupling to threonine 277 (see inset),
and then hydrogenolysis gave 28 (92%, two steps), which smoothly
coupled with 25 to furnish 29 (86%, 19 f 29). Exposure of 29 to
fluoride cleaved the silyl ether-protecting group (89%). The resultant
primary alcohol was converted to the mesylate and cyclized to give
the epoxide (93%), and then the tert-butyl ether was removed (88%)
to produce 1.
References
(1) Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001,
40, 2004-2021. Rao, A. S. In ComprehensiVe Organic Synthesis; Trost,
B. M., Flemming, I., Eds.; Pergamon: Oxford, 1991; Vol. 7, pp 357-
387. Hickey, M.; Goeddel, D.; Crane, Z.; Shi, Y. Proc. Natl. Acad. Sci.
U.S.A. 2004, 101, 5794-5798.
(2) For recent related allene oxidations with synthesis applications, see:
Xiong, H.; Huang, J.; Ghosh, S. K.; Hsung, R. P. J. Am. Chem. Soc. 2003,
125, 12694-12695. Fleming, S. A.; Carroll, S. M.; Sean, M.; Hirschi, J.;
Liu, R.; Pace, J. L.; Redd, J. T. Tetrahedron Lett. 2004, 45, 3341-3343.
(3) Hanada, H.; Sugawara, K.; Kaneta, K.; Toda, S.; Nishiyama, Y.; Tomita,
K.; Yamamoto, H.; Konishi, M.; Oki, T. J. Antibiot. 1992, 45, 1746-
1752. Meng, L.; Mohan, R.; Kwok, B. H. B.; Elofsson, M.; Sin, N.; Crews,
C. M. Proc. Natl. Acad. Sci. U.S.A., 1999, 96, 10403-10408.
(4) For proteasome structure, biology and applications lead references, see:
Kloetzel, P. M. Nat. ReV. Mol. Cell. Biol. 2001, 2, 179-188.
(5) Sin, N.; Kim, K. B.; Elofsson, M.; Meng, L.; Auth, H.; Kwok, B. H. B.;
Crews, C. M. Bioorg. Med. Chem. Lett. 1999, 9, 2283-2288.
(6) Crandall, J. K.; Machleder, W. H. Tetrahedron Lett. 1966, 7, 6037-6041.
Crandall, J. K.; Batal, D. J. Tetrahedron Lett. 1988, 29, 4791-4794.
Crandall, J. K.; Reix, T. Tetrahedron Lett. 1994, 35, 2513-2516. Crandall,
J. K.; Rambo, E. Tetrahedron Lett. 1994, 35, 1489-1492. Crandall, J.
K.; Machleder, W. H. J. Am. Chem. Soc. 1968, 90, 7292-7296. Crandall,
J. K.; Machleder, W. H.; Thomas, M. J. J. Am. Chem. Soc. 1968, 90,
7346-7347. Crandall, J. K.; Batal, D. J.; Lin, F.; Reix, T.; Nadol, G. S.;
Ng, R. A. Tetrahedron 1992, 48, 1427-1448. Crandall, J. K.; Rambo, E.
Tetrahedron 2002, 58, 7027-7036. Crandall, J. K.; Conover, W. W.;
Komin, J. B.; Machleder, W. H. J. Org. Chem. 1974, 39, 1723-1729.
Crandall, J. K.; Batal, D. J. J. Org. Chem. 1988, 53, 1338-1340. Crandall,
J. K.; Rambo, E. J. Org. Chem. 1990, 55, 5929-5930. Crandall, J. K.;
Batal, D. J.; Sebesta, D. P.; Lin, F. J. Org. Chem. 1991, 56, 1153-1166.
(7) See also: Supporting Information.
Spectral data for synthetic 1 proved identical to published data
25
for natural 1, including [R]D -64.0 (c 0.47, MeOH), lit3a -66.1
(c 0.50, MeOH), and confirms the stereochemical assignments in
Scheme 3. Chemical correlation secured the syn stereochemistry
of the major isomers of 15-17, 19, and 22 as shown in Scheme 2.
Nucleophilic opening of a spirodiepoxide effectively establishes
specific stereochemical communication across a carbonyl. As
depicted in eq 1, oxidation/nucleophilic opening installs three
(8) Albanese, D.; Landini, D.; Penso, M. Tetrahedron 1997, 53, 4787-4790.
(9) Shangguan, N.; Katukojvala, S.; Greenberg, R.; Williams, L. J. J. Am.
Chem. Soc. 2003, 125, 7754-7755.
(10) Frantz, D.; Fassler, R.; Carreira, E. M. J. Am. Chem. Soc. 2000, 122,
1806-1807.
(11) Elsevier, C. J.; Stehouwer, P. M.; Westmijze, H.; Vermeer, P. J. Org.
Chem. 1983, 48, 1103-1105. Elsevier, C. J.; Vermeer, P. J. Org. Chem.
1984, 49, 1649-1650.
(12) Murray, R. W.; Jeyaraman, R. J. Org. Chem. 1985, 50, 2847-2853.
(13) See also: Rameshkumar, C.; Xiong, H.; Tracey, M. R.; Berry, C. R.;
Yao, L. J.; Hsung, R. P. J. Org. Chem. 2002, 67, 1339-1345.
functional groups, nucleophile, ketone, and alcohol, with syn
JA044563C
9
J. AM. CHEM. SOC. VOL. 126, NO. 47, 2004 15349