10.1002/anie.201812068
Angewandte Chemie International Edition
COMMUNICATION
[3] a) H. Bader, A. R. Hansen, F. J. McCarty, J. Org. Chem. 1966, 31,
23192321; b) T. Ibata, Y. Isogami, J. Toyoda, Chem. Lett. 1987, 16,
11871190; c) M. Beller, C. Breindl, T. H. Riermeier, A. Tillack, J. Org.
Chem. 2001, 66, 14031412; d) P. Magdolen, M. Mečiarová, Š. Toma,
Tetrahedron 2001, 57, 47814785; e) W. Li, L. Yun, H. Wang, Synth.
Commun. 2002, 32, 26572662; f) L. Shi, M. Wang, C.-A. Fan, F.-M.
Zhang, Y.-Q. Tu, Org. Lett. 2003, 5, 35153517; g) J. L. Bolliger, C. M.
Frech, Tetrahedron 2009, 65, 11801187; h) P. Huang, B.-Y. He, H.-M.
Wang, J.-M. Lu, Synthesis 2014, 47, 221227.
absence of amination products for these substrates points toward
sluggish transmetallation or reductive elimination as potential
reasons for the substrate limitations of this prototypical protocol
with regard to benzoic acids. Since arylamine formation occurs in
a low 10% yield from the unsubstituted Pd phenyl complex III that
has theoretically already undergone transmetallation (Scheme 4,
iv), it is likely that an inefficient reductive elimination step is
currently the main impeding factor for achieving an amination
[4] a) F. Y. Kwong, A. Klapars, S. L. Buchwald, Org. Lett. 2002, 4, 581584;
b) F. Y. Kwong, S. L. Buchwald, Org. Lett. 2003, 5, 793796; c) A. Shafir,
S. L. Buchwald, J. Am. Chem. Soc. 2006, 128, 87428743; d) H. Xu, C.
Wolf, Chem. Commun. 2009, 17151717; e) C.-T. Yang, Y. Fu, Y.-B.
Huang, J. Yi, Q.-X. Guo, L. Liu, Angew. Chem. Int. Ed. 2009, 48,
73987401; f) Y.-B. Huang, C.-T. Yang, J. Yi, X.-J. Deng, Y. Fu, L. Liu, J.
Org. Chem. 2011, 76, 800810; g) J. Jiao, X.-R. Zhang, N.-H. Chang, J.
Wang, J.-F. Wei, X-Y. Shi, Z.-G. Chen, J. Org. Chem. 2011, 76, 11801183.
[5] a) J. P. Stambuli, R. Kuwano, J. F. Hartwig, Angew. Chem. Int. Ed. 2002,
41, 4746–4748; b) J. M. Dennis, N. A. White, R. Y. Liu, S. L. Buchwald, J.
Am. Chem. Soc. 2018, 140, 4721–4725; c) K. Geogheghan, Nat. Chem.
2018, 10, 487–487; d) D. S. Surry, S. L. Buchwald, Chem. Sci. 2011, 2, 27–
50; e) D. Maiti, B. P. Fors, J. L. Henderson, Y. Nakamura, S. L. Buchwald,
Chem. Sci. 2011, 2, 57–68.
[6] a) D. M. Chan, K. L. Monaco, R.-P. Wang, M. P. Winters, Tetrahedron Lett.
1998, 39, 2933–2936; b) P. Y. Lam, C. G. Clark, S. Saubern, J. Adams, M.
P. Winters, D. M. Chan, A. Combs, Tetrahedron Lett. 1998, 39, 2941–2944;
c) J. C. Antilla, S. L. Buchwald, Org. Lett. 2001, 3, 2077–2079; d) C. C.
Tzschucke, J. M. Murphy, J. F. Hartwig, Org. Lett. 2007, 9, 761–764; e) R.
P. Rucker, A. M. Whittaker, H. Dang, G. Lalic, Angew. Chem. Int. Ed. 2012,
51, 3953–3956.
applicable to
a
wider range of arenecarboxylic acids.
Nonetheless, transmetallation cannot be ruled out as rate-
determining step at this stage. The treatment of phenanthroline-
Pd amide acetate II with aryl–metal reagents led to the formation
of biaryls, confirming that these byproducts should have been
observed if the transmetallation was fast.
In conclusion, the long-awaited extension of decarboxylative
C(sp2)couplings to non-activated aliphatic and aromatic amine
substrates was made possible by a bimetallic Pd/Cu system in
combination with air or NMO as terminal oxidant. Key features of
this protocol are its user-friendliness, cost-efficiency and
orthogonality to other Pd-catalyzed couplings. Preliminary
mechanistic investigations suggest that formation of arylamine
compounds occurs via reductive elimination from phenanthroline
PdIV complexes. We are confident that remaining limitations of the
prototype process with regard to the benzoic acid scope can be
overcome by the use of customized ligands.
[7] a) Y. N. Timsina, B. F. Gupton, K. C. Ellis, ACS Catal. 2018, 8, 5732–5776.;
b) Y. Park, Y. Kim, S. Chang, Chem. Rev. 2017, 117, 92479301; c) Y.
Zhou, J. Yuan, Q. Yang, Q. Xiao, Y. Peng, ChemCatChem 2016, 8,
21782192; d) J. Roane, O. A. Daugulis, J. Am. Chem. Soc. 2016, 138,
46014607; e) H.-W. Wang, Y. Lu, B. Zhang, J. He, H.-J. Xu, Y.-S. Kang,
W.-Y. Sun, J.-Q. Yu, Angew. Chem. Int. Ed. 2017, 56, 74497553.
[8] M. Berger, R. Chauhan, C. Rodrigues, N. Maulide, Chem. Eur. J. 2016, 22,
1680516808.
[9] a) N. Rodríguez, L. J. Goossen, Chem. Soc. Rev. 2011, 40, 50305048; b)
L. J. Gooßen, K. Gooßen in Inventing Reactions; L. J. Gooßen, Ed.;
Springer Berlin Heidelberg: Berlin, Heidelberg, 2012; Vol. 44, pp 121–141;
c) D. Maiti, T. Patra, Chem. Eur. J. 2016, 23, 73827401.
[10] a) L. J. Goossen, G. Deng, L. M. Levy, Science 2006, 313, 662–664; b) J.
Tang, A. Biafora, L. J. Goossen, Angew. Chem. Int. Ed. 2015, 54,
1313013133.
[11] a) L. J. Gooßen, F. Rudolphi, C. Oppel, N. Rodríguez, Angew. Chem. Int.
Ed. 2008, 47, 3043–3045; b) F. Collet, B. Song, F. Rudolphi, L. J. Gooßen,
Eur. J. Org. Chem. 2011, 6486–6501.
[12] G. J. P. Perry, I. Larrosa, Eur. J. Org. Chem. 2017, 35173527.
[13] J. Kan, S. Huang, J. Lin, M. Zhang, W. Su, Angew. Chem. Int. Ed. 2015,
54, 2199–2203.
[14] T. Patra, S. Nandi, S. K. Sahoo, D. Maiti, Chem Commun 2016, 1432–1435.
[15] a) J. Li, X. Bi, H. Wang, J. Xiao, Asian J. Org. Chem. 2014, 3, 1113–1118;
b) J.-M. Becht, C. Le Drian, J. Org. Chem. 2011, 76, 6327–6330; c) Z. Duan,
S. Ranjit, P. Zhang, X. Liu, Chem. Eur. J. 2009, 15, 3666–3669; d) Z. Fu,
Z. Li, Q. Xiong, H. Cai, Eur. J. Org. Chem. 2014, 7798–7802.
Experimental Section
Large-scale synthesis: A 500 mL round-bottom flask equipped with a
Teflon-coated stirring bar was charged under air with Pd(NH3)4(HCO3)2
(297 mg, 1 mmol, 10 mol%), CuI (190 mg, 1 mmol, 10 mol%), 1,10-
phenanthroline (1.82 g, 10 mmol, 1 equiv.) and 4-chloro-2-nitro potassium
benzoate (10 mmol, 1 equiv.), after which non-dried anisole (120 mL),
DMAc (80 mL) and 4-cyanopiperidine (1.77 mL, 20 mmol, 2 equiv.) were
successively added and the mixture was stirred under an air atmosphere
at 145 °C for 16 h. After completion of the reaction, the resulting mixture
was diluted with ethyl acetate (100 mL) and water (50 mL). Following
phase separation, the aqueous layer was extracted 3 times with ethyl
acetate (50 mL). The combined organic phases were washed once with
water (20 mL) and once with brine (20 mL), then dried over anhydrous
MgSO4 and the organic phase was evaporated under reduced pressure
(rotary evaporator). The residue was purified by column chromatography
(gradient of cyclohexane/ethyl acetate 100:0 to 60:40) to give 2.1 g of 3dd
(78% yield).
Acknowledgements
[16] S. Bhadra, W. I. Dzik, W., L. J. Goossen, J. Am. Chem. Soc. 2012, 134,
9938–9941.
[17] W.-J. Sheng, Q. Ye, W.-B. Yu, R.-R. Liu, M. Xu, J.-R. Gao, Y.-X. Jia,
Tetrahedron Lett. 2015, 56, 599–601.
We thank the DFG (EXC/1069 “RESOLV” and SFB/TRR 88
“3MET”) for generous financial support. M.P.D. thanks the
Alexander von Humboldt Foundation and the Fonds de
Recherche du Québec – Nature et Technologies (FRQNT) for
postdoctoral fellowships. We thank Enis Yalcinkaya, Julian
Stoesser, Nico Pirkl and Daniel Sowa Prendes for technical
support.
[18] M. Li, J. M. Hoover, Chem Commun. 2016, 52, 8733–8736.
[19] Y. Zhang, S. Patel, N. Mainolfi, Chem. Sci. 2012, 3, 31963199.
[20] For examples of amination of propiolic acids, see: a) W. Jia, N. Jiao, Org.
Lett. 2010, 12, 2000–2003; b) D. L. Priebbenow, P. Becker, C. Bolm, Org.
Lett. 2013, 15, 6155–6157. For examples of amination of arylacetic and
cinnamic acids, see: c) Z. Fang, Y. Feng, H. Dong, D. Li, T. Tang, Chem.
Commun. 2016, 52, 1112011123; d) Y. Yan, M. Shi, B. Niu, X. Meng, C.
Zhu, G. Liu, T. Chen, Y. Liu, RSC Adv 2016, 6, 36192–36197. For
examples of amination of -activated carboxylic acids, see: e) Y. Yan, Z.
Wang, Chem. Commun. 2011, 47, 95139515; f) J. Zhang, J. Jiang, Y. Li,
Y. Zhao, X. A. Wan, Org. Lett. 2013, 15, 3222–3225; g) J. Zhang, Y. Shao,
Y. Wang, H. Li, D. Xu, X. Wan, Org. Biomol. Chem. 2015, 13, 3982–3987;
h) M.-J. Zhang, G. M. Schroeder, Y.-H. He, Z. Guan, RSC Adv. 2016, 6,
96693–96699; i) Y. Wei, H.-X. Zhang, J.-L. Zeng, J. Nie, J.-A. Ma, Org. Lett.
2017, 19, 2162–2165. For examples of amination of unactivated carboxylic
acids, see: j) Z.-J. Liu, X. Lu, G. Wang, L. Li, W.-T. Jiang, Y.-D. Wang, B.
Xiao, Y. Fu, J. Am. Chem. Soc. 2016, 138, 9714–9719; k) S. B. Lang, K.
C. Cartwright, R. S. Welter, T. M. Locascio, J. A. Tunge, Eur. J. Org. Chem.
2016, 3331–3334; l) Y. Liang, X. Zhang, D. W. C. MacMillan, Nature 2018,
559, 83–88. For examples of amination of redox-active esters, see: m) Q.
Keywords: amination • benzoic acids • decarboxylation •
bimetallic catalysis • hypervalent palladium
[1] N. A. McGrath, M. Brichacek, J. T. Njardarson, J. Chem. Ed. 2010, 87,
13481349.
[2] J. F. Hartwig, S. Shekhar, Q. Shen, F. Barrios-Landeros in PATAI’S
Chemistry of Functional Groups; Z. Rappoport, Ed.; John Wiley & Sons,
Ltd: Chichester, UK, 2009.
This article is protected by copyright. All rights reserved.