A. Ishii, M. Murata, H. Oshida, K. Matsumoto, J. Nakayama
SHORT COMMUNICATION
[6]
[7]
D. S. Brown, C. F. Owens, B. G. Wilson, M. E. Welker, Or-
ganometallics 1991, 10, 871Ϫ875.
M. Herberhold, B. Schmidkonz, M. L. Ziegler, T. Zahn, Angew.
Chem. 1985, 97, 517Ϫ518; Angew. Chem. Int. Ed. Engl. 1985,
24, 515Ϫ516.
M. Herberhold, B. Schmidkonz, J. Organomet. Chem. 1986,
308, 35Ϫ45.
G. A. Urove, M. E. Welker, Organometallics 1988, 7,
1013Ϫ1014.
G. A. Urove, M. E. Welker, J. Organomet. Chem. 1990, 384,
105Ϫ114.
K. K. Pandey, J. Mol. Struct. (Theochem) 1999, 491, 231Ϫ235.
M. Herberhold, A. F. Hill, J. Chem. Soc., Dalton Trans. 1988,
2027Ϫ2031.
G. Schmid, G. Ritter, T. Debaerdemaeker, Chem. Ber. 1975,
108, 3008Ϫ3013.
K. Nagata, N. Takeda, N. Tokitoh, Chem. Lett. 2003, 32,
170Ϫ171.
K. Nagata, N. Takeda, N. Tokitoh, Angew. Chem. 2002, 114,
144Ϫ146; Angew. Chem. Int. Ed. 2002, 41, 136Ϫ138.
S.-W. A. Fong, T. S. A. Hor, J. Chem. Soc., Dalton Trans.
1999, 639Ϫ651.
W. Weigand, R. Wünsch, Chem. Ber. 1996, 129, 1409Ϫ1419.
W. Weigand, R. Wünsch, K. Polborn, G. Mloston, Z. Anorg.
Allg. Chem. 2001, 627, 1518Ϫ1522.
W. Weigand, R. Wünsch, C. Robl, G. Mloston, H. Nöth, M.
Schmidt, Z. Naturforsch., Teil B 2000, 55, 453Ϫ458.
R. Wünsch, W. Weigand, G. Nuspl, J. Prakt. Chem. 1999,
341, 768Ϫ772.
W. Weigand, R. Wünsch, K. Polborn, Inorg. Chim. Acta 1998,
273, 106Ϫ110.
A. Ishii, M. Nakabayashi, J. Nakayama, J. Am. Chem. Soc.
1999, 121, 7959Ϫ7960.
A. Ishii, M. Nakabayashi, Y.-N. Jin, J. Nakayama, J. Or-
ganomet. Chem. 2000, 611, 127Ϫ135.
A. Ishii, H. Oshida, J. Nakayama, Tetrahedron Lett. 2001, 42,
3117Ϫ3119.
A. Ishii, H. Oshida, J. Nakayama, Bull. Chem. Soc. Jpn. 2002,
75, 319Ϫ328.
A. Ishii, T. Kawai, K. Tekura, H. Oshida, J. Nakayama, Angew.
Chem. 2001, 113, 1978Ϫ1980; Angew. Chem. Int. Ed. 2001,
40, 1924Ϫ1926.
P. W. Schenk, R. Steudel, Angew. Chem. 1965, 77, 437Ϫ445;
Angew. Chem. Int. Ed. Engl. 1965, 4, 402Ϫ409.
P. W. Schenk, R. Steudel, in Inorganic Sulfur Chemistry (Ed.:
G. Nickless), Elsevier, Amsterdam, 1968, p. 367.
R. Steudel, in Gmelin Handbuch der Anorganischen Chemie,
Schwefel, Ergänzungsband 3, Springer, Berlin, 1980, p. 1Ϫ69.
A. R. V. Murthy, T. R. N. Kutty, D. K. Sharma, Int. J. Sulfur
Chem. B 1971, 6, 161Ϫ175.
7.03Ϫ7.09 (m, 6 H), 7.14Ϫ7.19 (m, 8 H), 7.26Ϫ7.38 (m, 7 H),
7.48Ϫ7.54 (m, 6 H), 8.08Ϫ8.11 (m, 2 H) ppm. 31P NMR
2
1
(162 MHz, CDCl3): δ ϭ 18.5 (d, JP,P ϭ 23, JPt,P ϭ 2754 Hz),
2
1
22.9 (d, JP,P ϭ 23, JPt,P ϭ 3057 Hz) ppm. C47H44P2PtS3·2CHCl3
(C49H46Cl6P2PtS3; 1200.80): calcd. C 49.01, H 3.86; found C 49.06,
H 3.75.
[8]
[9]
Reaction of Tetrathiolane
9 with 4: Compound 4 (6.1 mg,
0.0081 mmol) was added at room temperature to a solution of 9
(2.7 mg, 0.0081 mmol) in benzene (2 mL). The yellow mixture was
stirred for 15 min at room temperature, and the solvent was re-
moved under reduced pressure. The 31P NMR spectrum of the resi-
due indicated the formation of the dithiolato complex 12, the
thioketone complex 13, and a compound assigned tentatively to
[10]
[11]
[12]
[13]
[14]
[15]
[16]
1
the S2 complex 18 (δ ϭ 22.7 ppm, JPt,P ϭ 3939 Hz) in the molar
ratio of 32:57:11.
Thermal Decomposition of 16. In CDCl3: A solution of 16 (10 mg,
0.0065 mmol) in CDCl3 (4 mL) under argon was heated at 50 °C
for 1.5 h. The 31P NMR spectrum of an aliquot taken from the
mixture indicated the formation of the S2O complex 10, the S2O2
[17]
[18]
1
complex 20 (δ ϭ 6.4, JPt,P ϭ 4019 Hz), [(PPh3)2PtCl2] (δ ϭ 14.9,
1JPt,P ϭ 3672 Hz), 16, Ph3PϭS (δ ϭ 44.0 ppm), and Ph3PϭO (δ ϭ
29.8 ppm) in the molar ratio of 33:11:21:11:14:11.
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
In Benzene in the Presence of Thioketone 14: A solution of 16
(23 mg, 0.015 mmol) and 14 (3.6 mg, 0.015 mmol) in benzene
(4.5 mL) was heated at 50 °C for 4 h under argon, and then the
solvent was removed under reduced pressure. The 31P NMR spec-
trum of the residue indicated the formation of the thioketone com-
plex 13, the S2O complex 10, and the S2O2 complex 20 in the molar
ratio of 50:43:7. The residue was subjected to column chromatogra-
phy (silica gel, CH2Cl2/Et2O, 5:1) to give a mixture of 14 and 13
(14 mg), and 10 (7.4 mg, 0.61 molar equiv.). The S2O2 complex 20
was not eluted from the silica-gel column. The molar ratio of 14
and 13 was 31:69, giving calculated yields of 0.0042 mmol (0.28
molar equiv.) and 0.010 mmol (0.66 molar equiv.), respectively.
When a solution of 16 (10 mg, 0.0065 mmol) in benzene (1.5 mL)
was heated at 50 °C, 1.0 mg of unidentifiable precipitates (ESI-MS:
m/2z ϭ 999.5) were collected by filtration.
[27]
[28]
[29]
[30]
[31]
[32]
[33]
[34]
Photolysis of 16: A solution of 16 in CDCl3 in an NMR tube was
irradiated with a high-pressure Hg lamp through a Pylex filter in
an ice-water bath for 1 h. The 31P NMR spectrum showed the for-
mation of the S2O2 complex 20, [(PPh3)2PtCl2], Ph3PϭO, and
Ph3PϭS in the molar ratio of 19:24:40:16. The signals due to the
S2O complex 10 were not observed (it was verified by a controlled
experiment that 10 barely decomposed under the conditions).
A. Ishii, M. Saitoh, M. Murata, J. Nakayama, Eur. J. Org.
Chem. 2002, 979Ϫ982.
W. Adam, J. Bialas, L. Hadjiarapoglou, Chem. Ber. 1991, 124,
2377.
W. Adam, L. Hadjiarapoglou, A. Smerz, Chem. Ber. 1991,
124, 227Ϫ232.
A. Shaver, M. El-khateeb, A.-M. Lebuis, Angew. Chem. 1996,
108, 2510Ϫ2512; Angew. Chem. Int. Ed. Engl. 1996, 35,
2362Ϫ2363.
Acknowledgments
We are grateful to Dr. Hideki Saito (Saitama University) for kind
discussion on the X-ray analysis of 10. This work was supported
by a Grant-in-Aid for Scientific Research (No. 12440174) from the
Ministry of Education, Culture, Sports, Science and Technology,
Japan.
[35]
Crystal data for 10: C36H30OP2PtS2·0.5C6H6 (C39H33OP2PtS2),
Mw ϭ 838.858, yellow plate, 0.30 ϫ 0.16 ϫ 0.06 mm3, mono-
clinic, space group P21/c, a ϭ 9.6861(6), b ϭ 21.5760(10), c ϭ
[1]
3
˚
˚
W. A. Schenk, Angew. Chem. 1987, 99, 101Ϫ112; Angew. Chem.
20.540(2) A, β ϭ 126.779(9)°, V ϭ 3438.1(4) A , Z ϭ 4,
Int. Ed. Engl. 1987, 26, 98Ϫ109.
ρ
calcd. ϭ 1.621 g cmϪ3, µ(Mo-Kα) ϭ 4.326 mmϪ1. Intensity data
[2]
K. K. Pandey, Prog. Inorg. Chem. 1992, 40, 445Ϫ502.
of 7920 independent reflections were collected in the range of
Ϫ12 Յ h Յ 12, 0 Յ k Յ 28, Ϫ26 Յ l Յ 12 with a Mac Science
MXC18 diffractometer using graphite-monochromated Mo-Kα
[3]
A. F. Hill, Adv. Organomet. Chem. 1994, 36, 159Ϫ227.
[4]
A. Müller, W. Jaegermann, J. H. Enemark, Coord. Chem. Rev.
˚
1982, 46, 245Ϫ280.
radiation (λ ϭ 0.71073 A) at 298 K. The structure was solved
[5]
J. E. Hoots, D. A. Lesch, T. B. Rauchfuss, Inorg. Chem. 1984,
by direct methods using SIR[42] and refined with full-matrix
23, 3130Ϫ3136.
least-squares (SHELXL-97[43]) using all the independent reflec-
3720
2003 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
Eur. J. Inorg. Chem. 2003, 3716Ϫ3721