Journal of the American Chemical Society
mechanism, the observations show that preferential
formation of the cross-coupled product 3a over 2p is
thermodyanamically controlled. The cross-coupling
selectivity for 4a obtained from the reaction of 1k and 1p
reflects an equilibrium preference for formation of the cross-
coupled over the homocoupled tetraarylhydrazines.22
Page 4 of 5
In conclusion, we have developed the first catalytic
method for aerobic N–N coupling of carbazoles to 9,9´-
bicarbazoles, and showed that similar conditions may be
used for the coupling of diarylamines. Moreover, we have
identified selective cross-coupling reactions of carbazoles
and diarylamines, wherein the selectivity arises from
reversible cleavage of the N–N bond in kinetically favored
tetraarylhydrazine intermediates, ultimately generating the
more stable carbazole-diarylamine products. The latter
compounds have little precedent and warrant attention in
medicinal and materials applications.
1
2
3
4
5
6
7
8
Br
Br
t-Bu
t-Bu
t-Bu
t-Bu
10 mol% CuBr•DMS,
20 mol% DMAP
9
NH + HN
N
N
N
DCE, O2 (1 atm),
60 ºC, 3 h
2
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
t-Bu
t-Bu
Br
1p
(1 equiv)
Br
1a
(1 equiv)
3a
2a
ASSOCIATED CONTENT
Br
Br
Br
Br
The Supporting Information is available free of charge on
the ACS Publications website.
Experimental Procedures and compound characterization
data (PDF)
N
N
2p
AUTHOR INFORMATION
Corresponding Author
*stahl@chem.wisc.edu
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
We would like to thank Eli Lilly and Company for funding
through the Lilly Research Award Program (LRAP). We also
thank the DOE (DE-FG02-05ER15690) for funding.
Spectroscopic instrumentation was partially supported by
the NIH (1S10 OD020022) and the NSF (CHE-1048642).
1
Figure 2. H NMR time course of the cross-coupling of
carbazole 1a and diarylamine 1p.
REFERENCES
1. Blair, L. M.; Sperry, J., J. Nat. Prod. 2013, 76, 794.
4160. (b) Yuan, Y.; Huang, H.; Chen, L.; Chen, Y. Macromolecules
2017, 50, 4993.
2. (a) Zhou, C.-H.; Wang. Y., Curr. Med. Chem. 2012, 19, 239. (b)
Küçükgüzel, Ş. G.; Şenkardeş, S., Eur. J. Med. Chem. 2015, 97, 786.
3. (a) Jain, S. R.; Sridhara, K.; Thangamathesvaran, P. M. Prog. Poly.
Sci. 1993, 18, 997. (b) Merino, E., Chem. Soc. Rev. 2011, 40, 3835.
4. (a) Cahn, J. W.; Powell, R. E., J. Am. Chem. Soc. 1954, 76, 2565. (b)
Li, G.; Nelsen, S. F.; Jalilov, A. S.; Guzei, I. A., J. Org. Chem. 2010,
75, 2445.
5. (a) Hayashi, H.; Kainoh, A.; Katayama, M.; Kawasaki, K.; Okazaki,
T., Ind. Eng. Chem. Prod. Res. Dev. 1976, 15, 299. (b) Grirrane, A.;
Corma, A.; García, H., Science 2008, 322, 1661. (c) Lu, W.; Xi, C., Tet.
Lett. 2008, 49, 4011. (d) Ueda, S.; Nagasawa, H., J. Am. Chem. Soc.
2009, 131, 15080. (e) Zhang, C.; Jiao, N., Angew. Chem. Int. Ed. 2010,
49, 6174. (f) Yan, X.-M.; Chen, Z.-M.; Yang, F.; Huang, Z.-Z., Synlett
2011, 2011, 569. (g) Chen, C.; Tang, G.; He, F.; Wang, Z.; Jing, H.;
Faessler, R., Org. Lett. 2016, 18, 1690. (h) Fritsche, R. F.; Theumer,
G.; Kataeva, O.; Knölker, H.-J., Angew. Chem. Int. Ed. 2017, 56, 549.
6. (a) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S., Angew. Chem. Int.
Ed. 2011, 50, 11062. (b) Ryland, B. L.; Stahl, S. S., Angew. Chem. Int.
Ed. 2014, 53, 8824. (c) McCann, S. D.; Stahl, S. S., Acc. Chem. Res.
2015, 48, 1756.
10. Perkin, W. H.; Tucker, S. H., J. Chem. Soc., Trans. 1921, 119, 216.
11. Branch, G. E. K.; Smith, J. F., J. Am. Chem. Soc. 1920, 42, 2405.
12. McLintock, J.; Horwood Tucker, S., J. Chem. Soc. 1927, 1214.
13. Rosen, B. R.; Werner, E. W.; O’Brien, A. G.; Baran, P. S., J. Am.
Chem. Soc. 2014, 136, 5571.
14. Baran and coworkers have observed similar products from the
electrochemical oxidative dimerization of carbazoles, originating from
unselective coupling of a carbazolyl radical intermediate (See ref. 13).
15. Kajimoto, T.; Takahashi, H.; Tsuji, J., Bull. Chem. Soc. Jpn. 1982,
55, 3673.
16 . Cu-catalyzed methods using oxidants other than O2: (a) Zhu, Y.;
Shi, Y., Org. Lett. 2013, 15, 1942. (b) Reddy, C. B. R.; Reddy, S. R.;
Naidu, S., Catal. Commun. 2014, 56, 50.
17 . Non-catalytic methods: (a) Naimi-Jamal, M. R.; Hamzeali, H.;
Mokhtari, J.; Boy, J.; Kaupp, G., ChemSusChem 2009, 2, 83. (b)
Zhang, L.; Xia, J.; Li, Q.; Li, X.; Wang, S., Organometallics 2011, 30,
375.
18. (a) Benati, L.; Placucci, G.; Spagnolo, P.; Tundo, A.; Zanardi, G.,
J. Chem. Soc., Perkin Trans. 1 1977, 1684. (b) Benati, L.; Spagnolo,
P.; Tundo, A.; Zanardi, G., J. Chem. Soc., Perkin Trans. 1 1979, 1536.
19. Cross-coupling between two differently-substituted carbazoles 1a
and 1c was also attempted, but formation of considerable amounts of
side products complicated analysis.
7. For a comprehensive review: Allen, S. E.; Walvoord, R. R.; Padilla-
Salinas, R.; Kozlowski, M. C. Chem. Rev. 2013, 113, 6234.
8. Zhang, Q.; Mándi, A.; Li, S.; Chen, Y.; Zhang, W.; Tian, X.; Zhang,
H.; Li, H.; Zhang, W.; Zhang, S.; Ju, J.; Kurtán, T.; Zhang, C., Eur. J.
Org. Chem. 2012, 2012, 5256.
9. (a) Pandit, P.; Yamamoto, K.; Nakamura, T.; Nishimura, K.;
Kurashige, Y.; Yanai, T.; Nakamura, G.; Masaoka, S.; Furukawa, K.;
Yakiyama, Y.; Kawano, M.; Higashibayashi, S., Chem. Sci. 2015, 6,
20. (a) Franzen, V., Justus Liebigs Ann. Chem. 1957, 604, 251. (b)
Cain, C. K.; Wiselogle, F. Y., J. Am. Chem. Soc. 1940, 62, 1163.
4
ACS Paragon Plus Environment