Breen et al.
1351
0.96 (d, 3H). 13C NMR (ppm) δ: 18.3, 18.9, 26.4, 30.3, 34.5,
56.8, 64.5, 127.9, 128.5, 133.0, 136.6, 199.0. HR-MS calcd.:
218.1307; found: 218.1299.
References
1. T.H. Chan and B.S. Ong. Tetrahedron, 36, 2269 (1980).
2. T.H. Chan and B.S. Ong. J. Org. Chem. 43, 2994 (1978).
3. P.J. Stang. In The chemistry of ethers, crown ethers, hydroxyl
groups and their sulphur analogues. Vol. 2. Edited by S. Patai.
Wiley, Chichester, UK. 1980. p. 859.
1-Phenyl-4,5-epoxyheptan-1-one (1c)
1H NMR (ppm) δ: 7.45–8.05 (multiplet, 5H), 3.15 (t, 2H),
2.82–2.87 (m, 1H), 2.71–2.77 (m, 1H), 2.12–2.25 (m, 1H),
1.78–1.91 (m, 1H), 1.53–1.64 (m, 2H), 1.00 (t, 3H). 13C
NMR (ppm) δ: 9.7, 24.9, 26.3, 34.5, 57.5, 60.2, 127.9,
128.5, 133.0, 136.6, 199.1. HR-MS calcd.: 204.1150; found:
204.1146.
4. A. Liberles, A. Greenberg, and A. Lesk. J. Am. Chem. Soc.
94, 8685 (1972).
5. M.E. Zandler, C.E. Choc, and C.K. Johnson. J. Am. Chem.
Soc. 96, 3317 (1974).
6. J.V. Ortiz. J. Org. Chem. 48, 4744 (1983).
7. B.A. Hess and J.K. Cha. THEOCHEM, 100, 11 (1993).
8. B.A. Hess, U. Eckart, and J. Fabian. J. Am. Chem. Soc. 120,
12310 (1998).
1-Phenyl-4,5-epoxypentan-1-one (1d) (34)
1H NMR (ppm) δ: 7.45–8.05 (multiplet, 5H), 3.20 (t, 2H),
3.10–3.17 (m, 1H), 2.81 (t, 1H), 2.55–2.58 (m, 1H), 2.16–
2.24 (m, 1H), 1.80–1.89 (m, 1H). 13C NMR (ppm) δ: 26.8,
34.4, 47.3, 51.5, 127.9, 128.5, 133.1, 136.6.
9. B.A. Hess, Jr., L. Smentek, A.R. Brash, and J.K. Cha. J. Am.
Chem. Soc. 121, 5603 (1999).
10. N. Tijet and A.R. Brash. Prostaglandins Other Lipid Media-
tors, 68–69, 423 (2002).
11. E.J. Corey, K. Ritter, M. Yus, and C. Najera. Tetrahedron Lett.
28, 3547 (1987).
12. J. Grimaldi, M. Malacria, and M. Bertrand. Bull. Soc. Chim.
Fr. 7–8, 1731 (1975).
Irradiation of precursors and determination of rate
constants
About 10 mg of 1a–1d were dissolved in 0.750 mL of
CD3CN (Aldrich) in a quartz cuvette (3 mm × 1 cm × 3 cm).
The solution was bubbled with nitrogen for 10 min and then
irradiated with 308 nm light (60 mJ/pulse, 8 ns pulse) from a
Lambda-Physik excimer laser operating at 5 Hz for 5–
10 min or with a high-pressure mercury lamp for 15–30 min.
Immediately after irradiation, the solution was transferred to
an NMR tube and the spectrum obtained using a Bruker AC-
250 MHz spectrometer (probe temperature 25 °C). To obtain
kinetic data, NMR spectra were obtained at specific time in-
tervals after irradiation. The time intervals varied depending
on the lifetime of the allene oxides, but generally six to ten
spectra were obtained. The peak area or intensity corre-
sponding to the vinyl protons of the allene oxides was mea-
sured in each spectrum (relative to a small amount of
CH2Cl2 added as an internal standard). These areas or inten-
sities were plotted as a function of time, and rate constants
extracted by nonlinear least-squares fitting of the data to a
first-order exponential equation.
13. M. Bertrand, J.P. Dulcere, G. Gil, J. Grimaldi, and P.
Sylvestre-Panthet. Tetrahedron Lett. 3305 (1976).
14. M. Bertrand, J.P. Dulcere, and G. Gil. Tetrahedron Lett. 21,
4271 (1980).
15. S.J. Kim and J.K. Cha. Tetrahedron Lett. 29, 5613 (1988).
16. I. Erden, F.P. Xu, J. Drummond, and R. Alstad. J. Org. Chem.
58, 3611 (1993).
17. I. Erden, F.P. Xu, and W.G. Cao. Angew. Chem. Int. Ed. Engl.
36, 1516 (1997).
18. M.M. Kabat. J. Org. Chem. 60, 1823 (1995).
19. M. Shipman, H.R. Thorpe, and I.R. Clemens. Tetrahedron, 55,
10845 (1999).
20. H. Xiong, R.P. Hsung, C.R. Berry, and C. Rameshkumar. J.
Am. Chem. Soc. 123, 7174 (2001).
21. J.K. Crandall, W.W. Conover, J.B. Komin, and W.H.
Machleder. J. Org. Chem. 39, 1723 (1974).
22. I. Erden and J. Drummond. Tetrahedron Lett. 34, 1255 (1993).
23. T.H. Chan and B.S. Ong. Tetrahedron Lett. 17, 3253 (1976).
24. R.O. Camp and F.D. Greene. J. Am. Chem. Soc. 90, 7349
(1968).
25. A.R. Brash. J. Am. Chem. Soc. 111, 1891 (1989).
26. A.R. Brash, S.W. Baertschi, C.D. Ingram, and T.M. Harris.
Proc. Natl. Acad. Sci. U.S.A. 85, 3382 (1988).
27. M.D. Clay, J. Durber, and N.P. Schepp. Org. Lett. 3, 3883
(2001).
For studies involving the addition of water, irradiation of
the precursor was carried out in the same way in neat
CD3CN. The 1H NMR spectrum was then obtained to ensure
allene oxide formation had taken place. A desired amount of
D2O was then added, followed by the acquisition of further
NMR spectra at appropriate time intervals. Rate constants
were determined in the same way as described in the previ-
28. T. Konoike, T. Hayashi, and Y. Araki. Tetrahedron: Asymme-
try, 5, 1559 (1994).
29. J.A. Katzenellenbogen and S.B. Bowlus. J. Org. Chem. 38,
627 (1973).
30. B. Capon, D.S. Rycroft, T.W. Watson, and C. Zucco. J. Am.
Chem. Soc. 103, 1761 (1981).
1
ous section for reaction in neat CD3CN. In all cases, the H
NMR spectra of the final stable product matched closely the
published spectra of the corresponding α-hydroxy ketones
(29).
31. Y. Chiang, A.J. Kresge, and N.P. Schepp. J. Am. Chem. Soc.
111, 3977 (1989).
32. R.W. Hoffmann, H. Brinkman, and G. Frenking. Chem. Ber.
123, 2387 (1990).
Acknowledgements
33. D. Seebach and L. Widler. Helv. Chim. Acta, 65, 1972 (1982).
34. P. Crotti, V. Di Bussolo, L. Favero, F. Macchia, M. Pineschl,
and E. Napolitano. Tetrahedron, 55, 5853 (1999).
The authors thank the Natural Sciences and Engineering
Research Council of Canada (NSERC) and PetroCanada
(Young Innovators Award) for financial support.
© 2005 NRC Canada