804
C. Meier, S. Gräsl
LETTER
(10) Riehl, H.; Meier, C. 2000, unpublished results.
(11) (a) Wolfe, J. P.; Wagaw, S.; Marcoux, J.-F.; Buchwald, S. L.
Acc. Chem. Res. 1998, 31, 805. (b) Hartwig, J. F. Acc.
Chem. Res. 1998, 31, 852.
(12) (a) Lakshman, M. K.; Hilmer, J. H.; Martin, J. Q.; Keeler, J.
C.; Dinh, Y. Q. V.; Ngassa, F. N.; Russon, L. M. J. Am.
Chem. Soc. 2001, 123, 7779. (b) N6 adducts have also been
synthesized by direct nucleophilic substitution: Véliz, E. A.;
Beal, P. A. J. Org. Chem. 2001, 66, 8592.
(13) (a) De Riccardis, F.; Bonala, R. R.; Johnson, F. J. Am. Chem.
Soc. 1999, 121, 10453. (b) De Riccardis, F.; Johnson, F.
Org. Lett. 2000, 2, 293.
(14) Wang, Z.; Rizzo, C. J. Org. Lett. 2001, 3, 565.
(15) Schoffers, E.; Olsen, P. D.; Means, J. C. Org. Lett. 2001, 3,
4221.
(16) Yin, J.; Buchwald, S. L. Org. Lett. 2000, 2, 1101; and
references cited.
(17) Uhlmann, E.; Pfleiderer, W. Helv. Chim. Acta 1981, 64,
1688.
(18) Gannett, P. M.; Sura, T. P. Synth. Commun. 1993, 23, 1611.
(19) Gao, X.; Jones, R. A. J. Am. Chem. Soc. 1987, 109, 1275.
(20) Harwood, E. A.; Sigurdsson, S. T.; Edfeldt, N. B.; Reid, B.
R.; Hopkins, P. B. J. Am. Chem. Soc. 1999, 121, 5081.
(21) Rac-BINAP is much less expensive than the biphenyl ligand.
(22) Old, D. W.; Wolfe, J. P.; Buchwald, S. L. J. Am. Chem. Soc.
1998, 120, 9722.
Scheme 2 Synthesis of the 5 -O-DMTr-3 -O-phosphoramidites 11,
12. i) n-Bu4NF (3 equiv), THF, r.t., 4 h; ii) Pd black, formamide,
1,4-cyclohexadiene, EtOAc/EtOH/MeOH, r.t., 6 h; iii) DMTrCl
(1.5 equiv), DMAP, pyridine, r.t., 12 h; iv) -cyanoethyl-di(i-
propyl)aminochlorophosphine (1.5 equiv); DIPEA, CH2Cl2, 0 °C,
30 min.
far. These adducts were converted into two potential
monomeric phosphoramidite building blocks in high
yields that should meet the conditions for automated
DNA-oligonucleotide synthesis. This opens the possibili-
ty to incorporate dG-adducts site-specifically into oligo-
nucleotides and/or DNA. Work along this route is current-
ly underway in our laboratories.
(23) Amination of N2-i-Butyryl-O6-benzyl-8-bromo-3 ,5 -bis(t-
butyldimethylsilyl)-2 -deoxyguanosine: 450.0 mg (0.61
mmol) 8-Bromo-2 -deoxyguanosine, 156.0 mg (0.73 mmol)
K3PO4, 56.1 mg (61.0 mol) tris(dibenzylideneacetone)di-
palladium(0) (Pd2dba3), 114.4 mg (0.18 mmol) racemic-
2,2 -bis(diphenylphosphino)-1,1 -binaphthyl (BINAP) and
131.2 mg (1.22 mmol) of p-toluidine was solubilized in
15 mL dry 1,2-DME in an inert atmosphere and stirred at
80 °C until the reaction was complete (TLC analysis). After
cooling to r.t., 1 mL of sat. sodium bicarbonate solution was
added. After addition of 10 mL of brine the layers were
separated and the aq layer was extracted three times with
10 mL of ethyl acetate. The combined organic layers were
washed twice with 10 mL of brine and once with a mixture
of 10 mL brine and 2 mL water. The organic layer was dried
(Na2SO4) and the solvent was removed in vacuo.
Purification by chromatography on silica gel, eluting with
20% ethyl acetate in hexane afforded 350 mg (75%) of the
desired product as a light-yellow foam.
Acknowledgement
This work was supported by Deutsche Forschungsgemeinschaft
(DFG), Fonds der Chemischen Industrie (FCI) and Bundesministe-
rium für Bildung und Forschung (BMBF)
References
(1) Garner, R. C. Mutat. Res. 1998, 402, 67.
(2) Neumann, H. G. J. Cancer Res. Clin. Oncol. 1986, 112, 100.
(3) Beland, F. A.; Kadlubar, F. F. Environ. Health Perspect.
1985, 62, 19.
(24) N2-i-Butyryl-8-N-(4-methylphenylamino)-O3 -[(2-cyano-
ethoxy)-(N,N-diisopropylamino)phosphinyl]-O5 -dimeth-
oxytrityl-2 -deoxyguanosine: 200.0 mg (0.27 mmol) of N2-i-
butyryl-8-N-(4-methylphenylamino)-O5 -dimethoxytrityl-
2 -deoxyguanosine were dissolved in 7 mL dry CH2Cl2 and
treated subsequently with 234 L (1.34 mmol) of DIPEA
and 113 L (0.51 mmol) of (2-cyanoethoxy)-(N,N-diiso-
propylamino)-chlorophosphine. After stirring for 1 h at r.t.,
the reaction was stopped by adding 0.5 mL of methanol. The
solution was diluted with 50 mL of CH2Cl2 and washed with
5% aq NaHCO3 followed by brine. The organic layer was
dried and concentrated to dryness. The residue was purified
by chromatography on silica gel, eluting with CH2Cl2/ace-
tonitrile and CH2Cl2/methanol to give 215.7 mg (85%) as a
light-yellow solid.
(4) Thorgeirsson, S. S. In Biochemical Basis of Chemical
Carcinogenesis; Greim, H.; Hung, R.; Marquardt, H.;
Oesch, F., Eds.; Raven Press: New York, 1984, 47.
(5) (a) Abuaf, P.; Hingerty, B. E.; Broyde, S.; Grunberger, D.
Chem. Res. Toxicol. 1995, 8, 369. (b) Shibutani, S.; Suzuki,
N.; Grollman, A. Biochemistry 1998, 37, 12034.
(c) Shibutani, S.; Fernandes, A.; Suzuki, N.; Zhou, L.;
Johnson, F.; Grollman, A. P. J. Biol. Chem. 1999, 274,
27433.
(6) (a) Zhou, Y.; Romano, L. J. Biochemistry 1993, 32, 14043.
(b) Shibutani, S.; Gentles, R. G.; Iden, C. R.; Johnson, F. J.
Am Chem. Soc. 1990, 112, 5667. (c) Patel, D. J.; Mao, B.;
Gu, Z.; Hingerty, B. E.; Gorin, A.; Basu, A. K.; Broyde, S.
Chem. Res. Toxicol. 1998, 11, 391. (d) Wu, X.; Shapiro, R.;
Broyde, S. Chem. Res. Toxicol. 1999, 12, 895. (e) Cho, B.
P.; Zhou, L. Biochemistry 1999, 38, 7572.
(25) It should be added that a synthesis of a C8-N-acetylamino-
fluorene (AAF) adduct phosphoramidite has been published
before. However, the initial synthesis of the adduct gave
very low yields and the protecting group chemistry was
different to ours, ref.6a and: Zhou, Y.; Chládek, S.; Romano,
L. J. J. Org. Chem. 1994, 59, 556.
(7) (a) Meier, C.; Boche, G. Carcinogenesis 1991, 12, 1633.
(b) Meier, C.; Boche, G. Tetrahedron Lett. 1990, 31, 1693.
(8) (a) Meier, C.; Boche, G. Tetrahedron Lett. 1990, 31, 1685.
(b) Meier, C.; Boche, G. Chem. Ber. 1990, 123, 1691.
(9) Famulok, M.; Boche, G. Angew. Chem., Int. Ed. Engl. 1989,
28, 468; Angew. Chem. 1989, 101, 470.
Synlett 2002, No. 5, 802–804 ISSN 0936-5214 © Thieme Stuttgart · New York