236
M. C. Ferna´ndez et al. / Tetrahedron: Asymmetry 13 (2002) 233–237
be rationalized considering the involvement of a cyclic
phosphonate carbanion such as 5 with preferential
approach of the electrophile with an axial trajectory to
its less hindered face (see Scheme 3).
parini, F.; Flor, P. J.; Kuhn, R.; Vranesic, I. Bioorg. Med.
Chem. Lett. 2000, 10, 1447–1450.
7. (a) Soloshonok, V. A.; Belokon, Y. N.; Kuzmina, N. A.;
Maleev, V. I.; Svistunova, N. Y.; Solodenko, V. A.;
Kukhar, V. P. J. Chem. Soc., Perkin Trans. 1 1992,
1525–1529; (b) Scho¨llkopf, U.; Busse, U.; Lonsky, R.;
Hinrichs, R. Liebigs Ann. Chem. 1986, 2150–2163.
8. (a) Casas, J.; Grigg, R.; Na´jera, C.; Sansano, J. M. Eur.
J. Org. Chem. 2001, 1971–1982; (b) Matoba, K.;
Yonemoto, H.; Fukui, M.; Yamazaki, T. Chem. Pharm.
Bull. 1984, 32, 3918–3925.
9. (a) Ojea, V.; Ruiz, M.; Shapiro, G.; Pombo-Villar, E. J.
Org. Chem. 2000, 65, 1984–1995; (b) Ruiz, M.; Ojea, V.;
Ferna´ndez, M. C.; Conde, S.; D´ıaz, A.; Quintela, J. M.
Synlett 1999, 1903–1906; (c) Ojea, V.; Ferna´ndez, M. C.;
Ruiz, M.; Quintela, J. M. Tetrahedron Lett. 1996, 37,
5801–5804; (d) Shapiro, G.; Buechler, D.; Ojea, V.;
Pombo-Villar, E.; Ruiz, M.; Weber, H.-P. Tetrahedron
Lett. 1993, 34, 6255–6258; (e) Minowa, N.; Hirayama,
M.; Fukatsu, S. Tetrahedron Lett. 1984, 25, 1147–1150.
10. For previous asymmetric syntheses of phosphonic acids
using phosphoryl-stabilized carbanions, see: (a) Den-
mark, S. E.; Chen, Ch. T. J. Am. Chem. Soc. 1995, 117,
11879–11897 and references cited therein; (b) Hanessian,
S.; Bennani, Y. L. Tetrahedron Lett. 1990, 31, 6465–6468.
In conclusion, either the conjugate additions of lithiated
bis-lactim ether derived from cyclo-[Gly- -Val] to a-
D
substituted vinylphosphonates or the electrophilic sub-
stitutions on the bis-lactim ether derived from
cyclo-[L-AP4-D-Val] take place regio- and stereoselec-
tively. Although the level of stereoselection attained in
these processes depends on the nature of the a-sub-
stituent or the electrophilic reagent, they allow a direct
access to a variety of 4-substituted AP4 derivatives in
enantiomerically pure form. Work is now underway to
extend these methodologies to the synthesis of 4-alkyli-
dene derivatives of glutamate and AP4. Evaluation of
the biological activity of these amino acids is currently
in progress.
Acknowledgements
We gratefully acknowledge the Ministerio de Ciencia y
Tecnolog´ıa (BQU2000-0236) and the Xunta de Galicia
(PGIDT00PXI10305PR) for financial support.
11. cyclo-[Gly-D-Val] was obtained as described by Rose et
al. Treatment of this compound with triethyloxonium
tetrafluoroborate allowed the preparation of the 2,5-
diethoxy pyrazine derivative. See Rose, J. E.; Leeson, P.
D.; Gani, D. J. Chem. Soc., Perkin Trans. 1 1995, 157–
165. Alternatively, both enantiomers of the related 2,5-
References
1. For recent reviews on glutamate receptors: (a) Brau¨ner-
Osborne, H.; Egebjerg, J.; Nielsen, E. O.; Madsen, U.;
Krogsgaard-Larsen, P. J. Med. Chem. 2000, 43, 2609–
2645; (b) Schoepp, D. D.; Jane, D. E.; Monn, J. A.
Neuropharmacology 1999, 38, 1431–1476.
dimethoxy-3-isopropyl-3,6-dihydropyrazine
can
be
synthesized12 or purchased from E. Merck.
12. Bull, S. D.; Davies, S. G.; Moss, W. O. Tetrahedron:
Asymmetry 1998, 9, 321–327.
13. Compound 4 was prepared as described by Shapiro et al.
in Ref. 9d, but using a O,O-diethyl phosphonate instead
of the O,O-diallyl one. All new compounds gave satisfac-
2. (a) Bruno, V.; Battaglia, G.; Ksiazek, I.; Van der Putten,
H.; Catania, M. V.; Giuffrida, R.; Lukic, S.; Leonhardt,
T.; Inderbitzin, W.; Gasparini, F.; Kuhn, R.; Hampson,
D. R.; Nicoletti, F.; Flor, P. J. J. Neurosci. 2000, 20,
6413–6420; (b) Abdul-Ghani, A.-S.; Attwell, P. J. E.;
Kent, N. S.; Bradford, H. F.; Croucher, M. J.; Jane, D.
E. Brain Res. 1997, 755, 202–212; (c) Johansen, P. A.;
Chase, L. A.; Sinor, A. D.; Koerner, J. F.; Johnson, R.
L.; Robinson, M. B. Mol. Pharmacol. 1995, 48, 140–149.
3. (a) Anderson, C. W.; Appella, E.; Sakaguchi, K. US
Patent 6 309 863, 2001; Chem. Abstr. 2001, 133, 134177;
(b) Wiemann, A.; Frank, R.; Tegge, W. Tetrahedron
2000, 56, 1331–1337; (c) Otaka, A.; Mitsuyama, E.;
Kinoshita, T.; Tamamura, H.; Fujii, N. J. Org. Chem.
2000, 65, 4888–4899; (d) Berkowitz, D. B.; Eggen, M. J.;
Shen, Q.; Shoemaker, R. K. J. Org. Chem. 1996, 61,
4666–4675; (e) Perich, J. W. Int. J. Pept. Protein Res.
1994, 44, 288–294; (f) Shapiro, G.; Buechler, D.; Enz, A.;
Pombo-Villar, E. Tetrahedron Lett. 1994, 35, 1173–1176.
4. Jackson, M. D.; Denu, J. M. Chem. Rev. 2001, 101,
2313–2340 and references cited therein.
1
tory IR, MS, and H, 13C and 31P NMR data.
14. We have not found any precedent for such non-selective
conjugate additions in the Scho¨llkopf’s bis-lactim chem-
istry. See: Williams, R. M. Synthesis of Optically Active
h-Amino Acids. Baldwin, J. E.; Magnus, P. D., Eds.;
Organic Chemistry Series, Vol. 7; Pergamon: Oxford,
1989.
15. The poor selectivity in these additions may well derive
from an increased reactivity of acceptors 2f and 2g, as
was suggested by the Editor.
16. The excess of the Scho¨llkopf reagent could be almost
completely recovered and showed no racemization.
17. For either 6b–e or 7b–e the H-5 resonance appears
between 3.67 and 3.91 ppm, as a triplet with 5JH2H5
close to 3.5 Hz, typical for a trans relation of substituents
at the pyrazine ring (see Ref. 17). The relative configura-
tions at position 2% were assigned on the basis of the sets
of NOEs observed for the 1,2-oxaphosphorinane deriva-
tives 14a–c.
5. Crooks, S. L.; Robinson, M. B.; Koerner, J. F.; Johnson,
R. L. J. Med. Chem. 1986, 29, 1988–1995.
6. (a) Nair, S. A.; Lee, B.; Hangauer, D. G. Synthesis 1995,
810–814; (b) Ma, D.; Ma, Z.; Jiang, J.; Yang, Z.; Zheng,
C. Tetrahedron: Asymmetry 1997, 8, 889–893; (c) Amori,
L.; Costantino, G.; Marinozzi, M.; Pellicciari, R.; Gas-
18. Busch, K.; Groth, U. M.; Ku¨hnle, W.; Scho¨llkopf, U.
Tetrahedron 1992, 48, 5607–5618.
19. Probably by chelation of the lithium with the phosphoryl
oxygen and a nitrogen atom of the bis-lactim ring, as
depicted in Scheme 3.