M. Mae et al. / Tetrahedron Letters 43 (2002) 2069–2072
2071
Scheme 3.
PMP
PMP
References
NH
N
CAN
MeCN/H2O
HF2C
PMP
HF2C
1. (a) Biomedicinal Aspects of Fluorine Chemistry; Filler, R.;
Kobayashi, Y., Eds.; Elsevier: Amsterdam, 1982; (b)
Walsh, C. Tetrahedron 1982, 38, 871; (c) Welch, J. T.;
Eswarakrishnan, S. Fluorine in Bioorganic Chemistry;
John Wiley & Sons: New York, 1990; (d) Organofluorine
Compounds in Medicinal Chemistry and Biomedical Appli-
cations; Filler, R.; Kobayashi, Y.; Yagupolski, L. M.,
Eds.; Elsevier Science: Amsterdam, 1993.
2. For example: (a) Kuo, D.; Rando, R. R. Biochemistry
1981, 20, 506; (b) Dibari, C.; Pastore, G.; Roscigno, G.;
Schechter, P. J.; Sjoerdsma, A. Ann. Intern. Med. 1986,
105, 83; (c) Seiler, N.; Jung, M. J.; Koch-Wester, J., Eds.
Enzyme-activated Irreversible Inhibitors, North-Holland:
Amsterdam, 1978; (d) Schirlin, D.; Gerhart, F.;
Hornsperger, J. M.; Hamon, M.; Wagner, J.; Jung, M. J.
J. Med. Chem. 1988, 31, 30.
3. Medicinal Chemistry, An Introduction; Tsuda, Y.;
Ninomiya, I.; Kaneto, H., Eds., Nankodo: Japan, 1996.
4. (a) Katagiri, T.; Ihara, H.; Kashino, S.; Furuhashi, K.;
Uneyama, K. Tetrahedron: Asymmetry 1997, 8, 2933; (b)
Bravo, P.; Crucianelli, M.; Ono, T.; Zanda, M. J. Fluo-
rine Chem. 1999, 97, 27; (c) Katagiri, T.; Takahashi, M.;
Fujiwara, Y.; Ihara, H.; Uneyama, K. J. Org. Chem.
1999, 64, 7323.
8 (92%)
2f
Scheme 4.
the other hand, when both the anion on nitrogen was
unstabilized by electron-donating group and the anion
on the a-carbon was stabilized by electron-withdrawing
group, a,b-unsaturated imines 5 were obtained. In path
B, initial addition of sulfur-ylide to b-carbon of
difluoroenamine followed by elimination of fluoride
anion and subsequent the fluoride anion attack on silyl
group resulted in the formation of 5 as a final product.
It is noteworthy that ethyl 3-fluoro-2-imino-3-butenoate
(5k)13 was obtained predominantly from ethyl 2-amino-
3,3-difluoroacrylate (1k), in which anion on a-carbon in
strongly stabilized by ethoxycarbonyl group.
N-p-Methoxyphenyl group of 2f was easily and selec-
tively removed by the oxidation with CAN to give
N-nonsubstituted aziridine 8 in 92% yield, which would
be transformed to
a
variety of functionalized
5. (a) Amii, H.; Kobayashi, T.; Hatamoto, Y.; Uneyama, K.
Chem. Commun. 1999, 1323; (b) Mae, M.; Amii, H.;
Uneyama, K. Tetrahedron Lett. 2000, 41, 7893; (c) Amii,
H.; Kobayashi, T.; Uneyama, K. Synthesis 2000, 2001;
(d) Amii, H.; Kobayashi, T.; Terasawa, H.; Uneyama, K.
Org. Lett. 2001, 3, 3103; (e) Amii, H.; Hatamoto, Y.; Seo,
M.; Uneyama, K. J. Org. Chem. 2001, 66, 7216.
difluoromethyl aziridines and amines (Scheme 4).
In summary, one-pot synthesis of difluoromethylaziridi-
nes by the reaction of difluoroenamines 1 with dimethyl-
oxosulfonium methylide was achieved where the favor-
able reaction course was controlled by electronic nature
of substituents both on nitrogen and imine carbon.
6. For reviews of sulfur ylides: (a) Trost, B. M.; Melvin, L.
S., Jr. Sulfur Ylides; Academic Press: New York, 1975;
(b) Corey, E. J.; Chaykovsky, M. J. Am. Chem. Soc.
1965, 87, 1353; (c) Trost, B. M.; Bogdanowicz, M. J. J.
Am. Chem. Soc. 1973, 95, 5298.
Acknowledgements
7. Selected spectra data for compound 2a: 1H NMR (200
MHz, CDCl3) l 2.72 (s, 1H), 2.74 (dd, JH–F=1.8, 3.6 Hz,
1H), 5.56 (t, JH–F=54.6 Hz, 1H), 6.94 (d, J=9.0, Hz,
2H), 7.18 (d, J=9.0 Hz, 2H), 7.32–7.37 (m, 3H), 7.46–
7.52 (m, 2H); 19F NMR (188 MHz, CDCl3, C6F6 as an
internal standard) l 42.8 (dd, JH–F=54.6 Hz, JF–F=289.0
The authors are grateful to the Ministry of Education,
Science, Sports, and Culture of Japan (grant-in-aid for
scientific research No. 13555254) and Okayama Univer-
sity VBL for the financial supports and the SC-NMR
Laboratory of Okayama University for 1H and 19F
NMR analyses.