Journal of the American Chemical Society
Article
(10) Wang, Z. J.; Brown, C. J.; Bergman, R. G.; Raymond, K. N.;
Toste, F. D. Hydroalkoxylation Catalyzed by a Gold(I) Complex
Encapsulated in a Supramolecular Host. J. Am. Chem. Soc. 2011, 133,
7358−7360.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
(11) Otte, M. Size-Selective Molecular Flasks. ACS Catal. 2016, 6,
6491−6510.
General synthetic procedures, ESI-MS data, and
characterization of new compounds (PDF)
(12) Leung, D. H.; Bergman, R. G.; Raymond, K. N. Highly
Selective Supramolecular Catalyzed Allylic Alcohol Isomerization. J.
Am. Chem. Soc. 2007, 129, 2746−2747.
AUTHOR INFORMATION
■
(13) Brown, C. J.; Miller, G. M.; Johnson, M. W.; Bergman, R. G.;
Raymond, K. N. High-Turnover Supramolecular Catalysis by a
Protected Ruthenium(II) Complex in Aqueous Solution. J. Am. Chem.
Soc. 2011, 133, 11964−11966.
Corresponding Authors
́
(14) García-Simon, C.; Gramage-Doria, R.; Raoufmoghaddam, S.;
Parella, T.; Costas, M.; Ribas, X.; Reek, J. N. H. Enantioselective
Hydroformylation by a Rh-Catalyst Entrapped in a Supramolecular
Metallocage. J. Am. Chem. Soc. 2015, 137, 2680−2687.
ORCID
Author Contributions
(15) Dydio, P.; Detz, R. J.; de Bruin, B.; Reek, J. N. H. Beyond
Classical Reactivity Patterns: Hydroformylation of Vinyl and Allyl
Arenes to Valuable β- and γ-Aldehyde Intermediates Using Supra-
molecular Catalysis. J. Am. Chem. Soc. 2014, 136, 8418−8429.
(16) Cavarzan, A.; Scarso, A.; Sgarbossa, P.; Strukul, G.; Reek, J. N.
H. Supramolecular Control on Chemo- and Regioselectivity via
Encapsulation of (NHC)-Au Catalyst Within a Hexameric Self-
Assembled Host. J. Am. Chem. Soc. 2011, 133, 2848−2851.
‡T. A. Bender and M. Morimoto contributed equally.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This research was supported by the Director, Office of Science,
Office of Basic Energy Sciences, and the Division of Chemical
Sciences, Geosciences, and Bioscience of the U.S. Department
of Energy at Lawrence Berkeley National Laboratory (Grant
No. DE-AC02-05CH11231) and a NIH Postdoctoral Fellow-
ship to T.A.B. (Grant No. 1F32GM129933-01). The
Advanced Light Source is supported by the Director, Office
of Science, Office of Basic Energy Sciences, of the U.S.
Department of Energy under Contract No. DE-AC02-
05CH11231. We gratefully thank Dr. Rita V. Nichiporuk for
her expertise and guidance in electrospray mass spectrometry
of metal−ligand complexes and Dr. Michael W. Mara for XAS
measurements.
(17) For a selection of organic reactions with dependence on a
supramolecular host, see: (a) Dalton, D. M.; Ellis, S. R.; Nichols, E.
M.; Mathies, R. A.; Toste, F. D.; Bergman, R. G.; Raymond, K. N.
12−
Supramolecular Ga4L6 Cage Photosensitizes 1,3-Rearrangement of
Encapsulated Guest via Photoinduced Electron Transfer. J. Am. Chem.
Soc. 2015, 137, 10128−10131. (b) Wu, N. W.; Rebek, J. Cavitands as
Chaperones for Monofunctional and Ring-Forming Reactions in
Water. J. Am. Chem. Soc. 2016, 138, 7512−7515. (c) Shi, Q.;
Masseroni, D.; Rebek, J. Macrocyclization of Folded Diamines in
Cavitands. J. Am. Chem. Soc. 2016, 138, 10846−10848. (d) Mosca, S.;
Yu, Y.; Gavette, J. V.; Zhang, K. D.; Rebek, J. A Deep Cavitand
Templates Lactam Formation in Water. J. Am. Chem. Soc. 2015, 137,
14582−14585. (e) Masseroni, D.; Mosca, S.; Mower, M. P.;
Blackmond, D. G.; Rebek, J. Cavitands as Reaction Vessels and
Blocking Groups for Selective Reactions in Water. Angew. Chem., Int.
Ed. 2016, 55, 8290−8293. (f) Kaphan, D. M.; Toste, F. D.; Bergman,
R. G.; Raymond, K. N. Enabling New Modes of Reactivity via
Constrictive Binding in a Supramolecular-Assembly-Catalyzed Aza-
Prins Cyclization. J. Am. Chem. Soc. 2015, 137, 9202−9205.
(18) For a recent review on Ullmann coupling, see: Sambiagio, C.;
Marsden, S. P.; Blacker, A. J.; McGowan, P. C. Copper Catalysed
Ullmann Type Chemistry: From Mechanistic Aspects to Modern
Developments. Chem. Soc. Rev. 2014, 43, 3525−3550. For an example
of an Ullmann coupling under mild conditions, see: Morimoto, H.;
Tsubogo, T.; Litvinas, N. D.; Hartwig, J. F. A Broadly Applicable
Copper Reagent for Trifluoromethylations and Perfluoroalkylations of
Aryl Iodides and Bromides. Angew. Chem., Int. Ed. 2011, 123, 3793−
3798.
(19) For select examples of similar Pd(II)/(IV) systems featuring
oxidative addition of an aryl halide see: (a) Faccini, F.; Motti, E.;
Catellani, M. A New Reaction Sequence Involving Palladium-
Catalyzed Unsymmetrical Aryl Coupling. J. Am. Chem. Soc. 2004,
126, 78−79. (b) Sehnal, P.; Taylor, R. J. K.; Fairlamb, I. J. S.
Emergence of Palladium(IV) Chemistry in Synthesis and Catalysis.
Chem. Rev. 2010, 110, 824−889.
(20) Detection of coencapsulated iodobenzene and copper species 3
proved challenging due to exchange and faster reaction times.
However, direct NOE correlation of an analogous substrate, ortho-
iodotoluene, and copper species 3 was observed. See Supporting
REFERENCES
■
(1) Slagt, V. F.; Reek, J. N. H.; Kamer, P. C. J.; van Leeuwen, P. W.
N. M. Assembly of Encapsulated Transition Metal Catalysts. Angew.
Chem., Int. Ed. 2001, 40, 4271−4274.
́
́
(2) Jans, A. C. H.; Gomez-Suarez, A.; Nolan, S. P.; Reek, J. N. H. A
Switchable Gold Catalyst by Encapsulation in a Self-Assembled Cage.
Chem. - Eur. J. 2016, 22, 14836−14839.
(3) Horiuchi, S.; Murase, T.; Fujita, M. Novel Trapping and
Stabilization of Dinuclear Ruthenium Complexes Within a Coordi-
nation Cage. J. Am. Chem. Soc. 2011, 133, 12445−12447.
(4) Horiuchi, S.; Murase, T.; Fujita, M. A Remarkable Organo-
metallic Transformation on a Cage-Incarcerated Dinuclear Ruthe-
nium Complex. Angew. Chem., Int. Ed. 2012, 51, 12029−12031.
(5) Daubignard, J.; Detz, R. J.; Jans, A. C. H.; de Bruin, B.; Reek, J.
N. H. Rational Optimzation of Supramolecular Catalysts for the
Rhodium-Catalyzed Asymmetric Hydrogenation Reaction. Angew.
Chem., Int. Ed. 2017, 56, 13056−13060.
(6) Hapiot, F.; Tilloy, S.; Monflier, E. Cyclodextrins as Supra-
molecular Hosts for Organometallic Complexes. Chem. Rev. 2006,
106, 767−781.
(7) Merlau, M. L.; Mejia, M.; del, P.; Nguyen, S. T.; Hupp, J. T.
Artificial Enzymes Formed Through Directed Assembly of Molecular
Square Encapsulated Epoxidation Catalysts. Angew. Chem., Int. Ed.
2001, 40, 4239−4242.
(8) Fiedler, D.; Leung, D. H.; Bergman, R. G.; Raymond, K. N.
Selective Molecular Recognition, C−H bond activation, and Catalysis
in Nanoscale Reaction Vessels. Acc. Chem. Res. 2005, 38, 349−358.
(9) Kaphan, D. M.; Levin, M. D.; Bergman, R. G.; Raymond, K. N.;
Toste, F. D. A Supramolecular Microenvironment Strategy for
Transition Metal Catalysis. Science 2015, 350, 1235−1238.
(21) Kohyama, Y.; Murase, T.; Fujita, M. Metal-Organic Proximity
in a Synthetic Pocket. J. Am. Chem. Soc. 2014, 136, 2966−2969.
(22) Leenders, S. H. A. M.; Becker, R.; Kumpulainen, T.; de Bruin,
B.; Sawada, T.; Kato, T.; Fujita, M.; Reek, J. N. H. Selective Co-
E
J. Am. Chem. Soc. XXXX, XXX, XXX−XXX