of aryl sulfones: J. K. Crandall and T. A. Ayers, J. Org. Chem., 1992, 57,
2993; A. Padwa, M. A. Filipkowski, D. N. Kline, S. S. Murphree and
P. E. Yeske, J. Org. Chem., 1993, 58, 2061.
3 For recent reviews, see A. F. Parsons, Tetrahedron, 1996, 52, 4149;
M. G. Moloney, Nat. Prod. Rep., 1998, 15, 206; 1999, 16, 485.
4 S. Murakami, T. Takemoto and Z. Shimizu, J. Pharm. Soc. Jpn., 1953,
73, 1026.
5 H. Watase, Y. Tomiie and I. Nitta, Nature (London), 1958, 181, 761.
6 E. G. McGeer, J. W. Olney and P. L. McGeer, Kainic Acid as a Tool in
Neurobiology, Raven Press, New York, 1978.
7 H. Shinozaki, in Excitatory Amino Acid Receptors. Design of Agonists
and Antagonists, ed. P. Krogsgaard-Larsen and J. J. Hansen, Ellis
Horwood, New York, 1992, p. 261.
enone 10, whose pyrrolidinone ring has the relative stereo-
chemistry of kainic acid.
Lithium dimethyl cuprate, in the presence of trimethylsilyl
chloride, attacked solely the exo face of the enone 10: TFA
catalysed both hydrolysis of the product silyl enol ether and
removal of the cumyl group, and the lactam 11 was reprotected
as its Boc derivative 12.
The phenyl ring of 12 was oxidised with catalytic RuO4, and
we found that replacing the usual MeCN–CCl4–H2O system14
with 1+1 acetone–water considerably improved the rate of the
reaction. The carboxylic acid product was esterified with
trimethylsilyldiazomethane15 to give 13.
We used Baeyer–Villiger oxidation to cleave the cyclohex-
anone ring of 13 into the two portions required in the target:
remarkably, despite the fact that the ketone is almost identically
substituted on both sides, the oxidation was fully regioselective
and gave 14 with no trace of the other regioisomer. We
tentatively propose that the regioselectivity is a consequence of
the conformational preference of the intermediate peracid
adduct in the Baeyer–Villiger reaction. Attack of the peracid on
the exo-face of 13 gives 18, whose pseudo-axial methyl group
8 S. Husinec, A. E. A. Porter, J. S. Roberts and C. H. Strachan, J. Chem.
Soc., Perkin Trans. 1, 1984, 2517.
9 J. J. Hansen and P. Krogsgaard-Larsen, Med. Res. Rev., 1990, 10, 55.
10 (a) W. Oppolzer and K. Thirring, J. Am. Chem. Soc., 1982, 104, 4978;
(b) J. Cooper, D. W. Knight and P. T. Gallagher, J. Chem. Soc., Chem.
Commun., 1987, 1220; (c) J. Cooper, D. W. Knight and P. T. Gallagher,
J. Chem. Soc., Perkin Trans. 1, 1992, 553; (d) J. E. Baldwin and C.-S.
Li, J. Chem. Soc., Chem. Commun., 1987, 166; (e) J. E. Baldwin, M. G.
Moloney and A. F. Parsons, Tetrahedron, 1990, 46, 7263; (f) S. Takano,
Y. Iwabuchi and K. Ogasawara, J. Chem. Soc., Chem. Commun., 1988,
1204; (g) S. Takano, T. Sugihara, S. Satoh and K. Ogasawara, J. Am.
Chem. Soc., 1988, 110, 6467; (h) N. Jeong, S.-E. Yoo, S. J. Lee, S. H.
Lee and Y. K. Chung, Tetrahedron Lett., 1991, 32, 2137; (i) S.-E. Yoo,
S.-H. Lee, N. Jeong and I. Cho, Tetrahedron Lett., 1993, 34, 3435; (j)
S.-E. Yoo and S.-H. Lee, J. Org. Chem., 1994, 59, 6968; (k) S. Takano,
K. Inomata and K. Ogasawara, J. Chem. Soc., Chem. Commun., 1992,
169; (l) A. Barco, S. Benetti, G. P. Pollini, G. Spalluto and V. Zanirato,
J. Chem. Soc., Chem. Commun., 1991, 390; (m) S. Hatakeyama, K.
Sugawara and S. Takano, J. Chem. Soc., Chem. Commun., 1993, 125;
(n) S. Hanessian and S. Ninkovic, J. Org. Chem., 1996, 61, 5418; (o) Y.
Nakada, T. Sugahara and K. Ogasawara, Tetrahedron Lett., 1997, 38,
857; (p) M. D. Bachi and A. Melman, J. Org. Chem., 1997, 62, 1896; (q)
O. Miyata, Y. Ozawa, I. Ninomiya and T. Naito, Synlett, 1997, 275; (r)
A. Rubio, J. Ezquerra, A. Escribano, M. J. Remuin˜a´n and J. J. Vaquero,
Tetrahedron Lett., 1998, 39, 2171; (s) J. Cossy, M. Cases and D. G.
Pardo, Tetrahedron, 1999, 55, 6153; (t) A. D. Campbell, T. M.
Raynham and R. J. K. Taylor, Chem. Commun., 1999, 245.
11 (a) J. A. Monn and M. J. Valli, J. Org. Chem., 1994, 59, 2773; (b) S.-E.
Yoo, S.-H. Lee, K.-Y. Yo and N. Jeong, Tetrahedron Lett., 1990, 31,
6877.
may favour a conformation with the breaking O–O bond
antiperiplanar to the C–C bond shown in bold, rather than the
C–C bond to the other side of the former ketone.
Seven-membered lactone 14 was converted to diester 15 by
hydrolysis with methanolic NaOH (slow addition of base
avoided cleavage of the Boc protecting group) and esterification
with trimethylsilyldiazomethane.15 The elimination of water to
give the isopropenyl group of 16 was achieved in one step by
direct formation of a selenide16 which was oxidised and
eliminated under mild conditions.
Sodium trimethoxyborohydride selectively reduced the lac-
tam carbonyl group of 16 in the presence of the two esters,17 and
wet trifluoroacetic acid both deprotected the amino group and
hydrolysed the esters of the product 17. The racemic product
(±)-4 was recrystallised from methanol and had spectroscopic
properties (1H and 13C NMR) identical with those of natural
kainic acid.
12 D. Balderman and A. Kalir, Synthesis, 1978, 24.
13 The use of cumyl as an organolithium-resistant acid labile protecting
group for nitrogen was recently independently reported by Snieckus and
coworkers: C. Metallinos, S. Nerdinger and V. Snieckus, Org. Lett.,
1999, 1, 1183.
14 Sharpless recommended the use of MeCN to keep Ru–carboxylate
complexes in solution: P. H. Carlsen, T. Katsuki, V. S. Mart´ın and K. B.
Sharpless, J. Org. Chem., 1981, 46, 3936. See also M. T. Nun˜ez and
V. S. Mart´ın, J. Org. Chem., 1990, 55, 1928; T. Shioiri, F. Matsuura and
Y. Hamada, Pure Appl. Chem., 1994, 66, 2151.
We are grateful to the Leverhulme Trust for a grant.
15 N. Hashimoto, T. Aoyama and T. Shioiri, Chem. Pharm. Bull., 1981, 29,
1475.
16 P. A. Grieco, S. Gilmann and H. Nishizawa, J. Org. Chem., 1976, 41,
1485.
Notes and references
1 A. Ahmed, J. Clayden and S. A. Yasin, Chem. Commun., 1999, 231.
2 Dearomatising anionic cyclisations are also known in the naphthamide
series: A. Ahmed, J. Clayden and M. Rowley, Chem. Commun., 1998,
297; A. Ahmed, J. Clayden and M. Rowley, Tetrahedron Lett., 1998, 39,
6103; R. A. Bragg and J. Clayden, Tetrahedron Lett., 1999, 40, 8323;
Tetrahedron Lett., 1999, 40, 8327. There are reports of similar reactions
17 We are not aware of other uses of this reagent to reduce lactams in the
presence of esters. See, however, M. E. Kuehne and P. J. Shannon,
J. Org. Chem., 1977, 42, 2082.
Communication a909325g
318
Chem. Commun., 2000, 317–318
Typeset and printed by Black Bear Press Limited, Cambridge, England