G. Chelucci et al. / Tetrahedron Letters 43 (2002) 3601–3604
3603
recorded with these alkenes was significantly shorter
than most of the catalysts reported so far.9,11 On the
other hand, cyclooctene was substantially unreactive, in
fact only a trace of the reaction product was detected
after a week.
Lett. 2000, 2, 3047; (c) Wong, H. L.; Tian, Y.; Chan, K.
S. Tetrahedron Lett. 2000, 41, 7723; (d) Rios, R.; Liang,
J.; Lo, M. M.-C.; Fu, G. C. Chem. Commun. 2000, 377;
(e) Chelucci, G.; Culeddu, N.; Saba, A.; Valenti, R.
Tetrahedron: Asymmetry 1999, 10, 3537; (f) Fletcher, N.
C.; Keene, F. R.; Ziegler, M.; Stoeckli-Evans, H.;
Viebrock, H.; von Zelewsky, A. Helv. Chim. Acta 1996,
79, 119; (g) Ito, K.; Yoshitake, M.; Katsuki, T. Tetra-
hedron 1996, 3905; (h) Ito, K.; Katsuki, T. Chem. Lett.
1994, 1857; (i) Chelucci, G.; Falorni, M.; Giacomelli, G.
Tetrahedron 1992, 48, 3653; (j) Ito, K.; Tabuchi, S.;
Katsuki, T. Synlett 1992, 575; (k) Ito, K.; Tabuchi, S.;
Katsuki, T. Tetrahedron Lett. 1992, 575; (l) Bolm, C.;
Zehnder, M.; Bur, D. Angew. Chem., Int. Ed. Engl. 1990,
29, 205.
The stereoselectivity was also dependent on the struc-
ture of the cycloalkene. Thus, the enantiomeric excess
obtained in the oxidation of cyclopentene and cyclohex-
ene was modest (47–57% ee), while that afforded by
cycloheptene was moderately high (63–71% ee).
A comparison among the data obtained with ligands
6–8 appear to indicate that the increase of the stiffness
of the structure of the ligand passing from the bpy 8 to
the phen 7 has a beneficial effect on the enantioselectiv-
ity of the reaction. This fact is particularly evident
employing cycloheptene as the alkene. In this case the
enantiomeric excess of 62% obtained with the bpy 8
was substantially lower than that found with the phen 7
(71% ee).3a,b
4. (a) Gladiali, S.; Chelucci, G.; Madadu, M. T.; Gastaut,
M. G.; Thummel, R. P. J. Org. Chem. 2001, 66, 400; (b)
Chelucci, G.; Pinna, G. A.; Saba, A.; Sanna, G. J. Mol.
Catal. A 2000, 159, 423; (c) Chelucci, G.; Saba, A.;
Sanna, G.; Soccolini, F. Tetrahedron: Asymmetry 2000,
11, 3427; (d) Chelucci, G.; Thummel, R. P. Synth. Com-
mun. 1999, 29, 1665; (e) O’Neill, D.; Helquist, P. Org.
Lett. 1999, 1, 1659; (f) Riesgo, E. C.; Credi, A.; De Cola,
L.; Thummel, R. P. Inorg. Chem. 1998, 37, 2145; (g)
Chelucci, G.; Saba, A. Tetrahedron: Asymmetry 1998, 9,
2575; (h) Pen˜a-Cabrera, E.; Norrby, P.-A.; Sjgo¨ren, M.;
Vitagliano, A.; De Felice, V.; Oslob, J.; Ishii, S.; O’Neill,
In summary, we have described a general procedure for
the preparation of C2-symmetric phens preparing the
new dyhydrophen (+)-6 and phen (+)-7 from (−)-b-
pinene. The preliminary results obtained with the
[Cu(I)-7] complex indicate that phens are good catalysts
in asymmetric-catalyzed allylic oxidation of cycloalke-
nes. Further studies aimed at the synthesis of other
C2-symmetric phens with the hope to obtain a very
effective enantioselective catalytic system are in
progress.
,
D.; Akermark, B.; Helquist, P. J. Am. Chem. Soc. 1996,
118, 4299; (i) Gladiali, S.; Pinna, L.; Delogu, G.; De
Martin, S.; Zassinovich, G.; Mestroni, G. Tetrahedron:
Asymmetry 1990, 1, 635; (j) Kandzia, C.; Steckhan, E.;
Knoch, F. Tetrahedron: Asymmetry 1993, 4, 39; (k)
Chelucci, G.; Falorni, M.; Giacomelli, G. Tetrahedron
1992, 48, 3653; (l) Gladiali, S.; Chelucci, G.; Soccolini, F.;
Delogu, G.; Chessa, G. J. Organomet. Chem. 1989, 370,
285; (m) Gladiali, S.; Chelucci, G.; Chessa, G.; Delogu,
G.; Soccolini, F. J. Organomet. Chem. C 1987, 327, 15.
5. Wu, Y.-J.; Ding, W.-L.; Du, C.-X. Tetrahedron: Asymme-
try 1998, 9, 4035.
Acknowledgements
Thanks are due to Mr. Mauro Mucedda for experimen-
tal assistance. Financial support by M.U.R.S.T. and by
Regione
acknowledged.
Autonoma
Sardegna
is
gratefully
6. Gianini, M.; Von Zelewsky, A. Synthesis 1996, 702.
7. All compounds showed satisfactory spectroscopic and
analytical data. Compound (+)-6: mp 116–118°C; [h]D20
1
+111.5 (c 1.1 CHCl3); H NMR (CDCl3): l 7.26 (s, 2H),
References
3.29 (t, 2H, J=5.7 Hz); 3.00–279 (m, 8H); 2.69 (m, 2H);
2.29 (m, 2H); 1.40 (s, 6H); 1.30 (d, 2H, J=9.6 Hz); 0.69
(s, 6H). Compound (+)-7: mp 104–106°C; [h]2D0 +68.2 (c
1.2 CHCl3); 1H NMR (CDCl3): l 7.91 (s, 2H); 7.63 (s,
2H), 3.58 (t, 2H, J=5.7 Hz); 3.17 (m, 4H); 2.80 (m, 2H);
2.28 (m, 2H); 1.46 (s, 6H); 1.42 (d, 2H, J=9.9 Hz); 0.71
(s, 6H).
1. Fache, F.; Schulz, E.; Tommasino, M. L.; Lemaire, M.
Chem. Rev. 2000, 100, 2159.
2. (a) Chelucci, G.; Gladiali, S.; Sanna, M. G.; Brunner, H.
Tetrahedron: Asymmetry 2000, 11, 3419; (b) Chelucci, G.;
Gladiali, S.; Saba, A.; Sanna, G.; Soccolini, F. Tetra-
hedron: Asymmetry 2000, 11, 3427; (c) Chelucci, G.;
Pinna, G. A.; Saba, A. Tetrahedron: Asymmetry 1998, 9,
531; (d) Collomb, P.; von Zelewsky, A. Tetrahedron:
Asymmetry 1998, 9, 3911; (e) Duboc-Toia, C.; Me´nage,
S.; Lambeaux, C.; Fontecave, M. Tetrahedron Lett. 1997,
38, 3727; (f) Chelucci, G.; Cabras, M. A.; Botteghi, C.;
Basoli, C.; Marchetti, M. Tetrahedron: Asymmetry 1996,
7, 885; (g) Chen, C.; Tagami, K.; Kishi, Y. J. Org. Chem.
1995, 60, 5386.
8. (a) Katsuki, T. In Jacobsen, E. N.; Pfaltz, A.,
Yamamoto, H., Eds.; Asymmetric C–H Oxidation in
Comprehensive Asymmetric Catalysis; Springer: Berlin,
1999; Vol. 2, Chapter 21, pp. 791–802; (b) Kohmura, Y.;
Katsuki, T. Tetrahedron Lett. 2000, 41, 3941 and refer-
ences cited therein.
9. (a) Sekar, G.; DattaGupta, A.; Singh, V. K. J. Org.
Chem. 1998, 63, 2961; (b) Koswer, E. M. Acc. Chem. Res.
1971, 4, 193.
3. (a) Malkov, A. V.; Baxandale, I. R.; Bella, M.; Langer,
V.; Fawcett, J.; Russell, D. R.; Mansfield, D. J.; Valko,
M.; Kocovsky, P. Organometallics 2001, 20, 673; (b)
Malkov, A. V.; Bella, M.; Langer, V.; Kocovsky, P. Org.
10. Typical procedure for allylic oxidation: a solution of the
ligand (0.06 mmol) and Cu(OTf)2 (18 mg, 0.05 mmol) in
acetone (4 ml) was stirred under a nitrogen atmosphere at
20°C for 1 h. Phenylhydrazine (5.9 ml, 0.06 mmol) was