Page 3 of 4
Journal of the American Chemical Society
MCD of [EuL]ꢀ it could suggest a higher degree of orbital overlap
(2) Bünzli, J.-C. G.; Eliseeva, S. V. Chemical Science 2013, 4,
1939.
for [Euꢀ]ꢉꢁꢂꢃꢄꢅꢆꢇꢈ
.
1
2
3
4
5
6
7
8
(3) Butler, S. J.; Parker, D. Chem. Soc. Rev. 2013, 42, 1652.
(4) Faulkner, S.; Pope, S. J. A.; Burton‐Pye, B. P. Appl. Spec-
trosc. Rev. 2005, 40, 1.
(5) Wang, X.; Chang, H.; Xie, J.; Zhao, B.; Liu, B.; Xu, S.; Pei,
W.; Ren, N.; Huang, L.; Huang, W. Coord. Chem. Rev. 2014,
273–274, 201.
(6) Moore, E. G.; Xu, J.; Jocher, C. J.; Werner, E. J.; Raymond,
K. N. J. Am. Chem. Soc. 2006, 128, 10648.
1.25
0.5
0.25
0
5L <ꢀ7
F
0
in situ
6
in situ
5D <ꢀ7
2
F
0
1
isolated
isolated
0.75
0.5
0.25
0
ꢀ0.25
ꢀ0.25
ꢀ0.5
ꢀ0.5
9
(7) D'Aleo, A.; Moore, E. G.; Szigethy, G.; Xu, J.; Raymond, K. N.
Inorg. Chem. 2009, 48, 9316.
392 393 394 395 396 397 398
462 463 464 465 466 467 468
Wavelength [nm]
Wavelength [nm]
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
Figure 3 Observed MCD transitions for [Euꢀ]ꢉꢁꢂꢃꢄꢅꢆꢇꢈ and
[Euꢀ]ꢉꢁꢊ ꢂꢁꢆꢋ measured in DMF:MeOH (2:1) at 7 T and 250K
(8) Pacold, J. I.; Tatum, D. S.; Seidler, G. T.; Raymond, K. N.;
Zhang, X.; Stickrath, A. B.; Mortensen, D. R. J. Am. Chem. Soc.
2014, 136, 4186.
(9) Abergel, R. J.; D’Aléo, A.; Ng Pak Leung, C.; Shuh, D. K.;
Raymond, K. N. Inorg. Chem. 2009, 48, 10868.
(10) Sturzbecher-Hoehne, M.; Clara, N. P. L.; D'Aleo, A.;
Kullgren, B.; Prigent, A. L.; Shuh, D. K.; Raymond, K. N.; Aber-
gel, R. J. Dalton Trans. 2011, 40, 8340.
(11) Abergel, R. J.; Durbin, P. W.; Kullgren, B.; Ebbe, S. N.; Xu,
J.; Chang, P. Y.; Bunin, D. I.; Blakely, E. A.; Bjornstad, K. A.;
Rosen, C. J.; Shuh, D. K.; Raymond, K. N. Health Phys. 2010, 99,
401.
(12) Sturzbecher-Hoehne, M.; Deblonde, G. J. P.; Abergel, R. J.
Radiochim. Acta 2013, 101, 359.
(13) Deblonde, G. J. P.; Sturzbecher-Hoehne, M.; Abergel, R. J.
Inorg. Chem. 2013, 52, 8805.
(14) Kullgren, B.; Jarvis, E. E.; An, D. D.; Abergel, R. J. Toxicol.
Mech. Methods 2013, 23, 18.
(15) An, D. D.; Villalobos, J. A.; Morales-Rivera, J. A.; Rosen, C.
J.; Bjornstad, K. A.; Gauny, S. S.; Choi, T. A.; Sturzbecher-
Hoehne, M.; Abergel, R. J. Int. J. Radiat. Biol. 2014, 90, 1055.
(16) Liu, M.; Wang, J.; Wu, X.; Wang, E.; Abergel, R. J.; Shuh, D.
K.; Raymond, K. N.; Liu, P. J. Pharm. Biomed. Anal. 2015, 102,
443.
(17) Deri, M. A.; Ponnala, S.; Zeglis, B. M.; Pohl, G.;
Dannenberg, J. J.; Lewis, J. S.; Francesconi, L. C. J. Med. Chem.
2014, 57, 4849.
(18) Sturzbecher-Hoehne, M.; Kullgren, B.; Jarvis, E. E.; An, D.
D.; Abergel, R. J. Chem. –Eur. J. 2014, 20, 9962.
(19) Xu, J. D.; Radkov, E.; Ziegler, M.; Raymond, K. N. Inorg.
Chem. 2000, 39, 4156.
(20) Horrocks, W. D.; Sudnick, D. R. J. Am. Chem. Soc. 1979,
101, 334.
(21) Beeby, A.; Bushby, L. M.; Maffeo, D.; Gareth Williams, J. A.
J. Chem. Soc., Dalton Trans. 2002, 48.
(22) Werts, M. H. V.; Jukes, R. T. F.; Verhoeven, J. W. Phys.
Chem. Chem. Phys. 2002, 4, 1542.
(23) Bünzli, J. C. G.; Choppin, G. R. Lanthanide probes in life,
chemical and earth sciences: Theory and practice.; Elsevier:
Amsterdam, 1989.
(24) Görller-Walrand, C.; Fluyt, L. In Handbook on the Physics
and Chemistry of Rare Earths; Karl A. Gschneidner, J. J.-C. G. B.
n., Vitalij, K. P., Eds.; Elsevier: 2010; 40.
Combining the results from magnetic circular dichroism and
the luminescence quantum yield and lifetime measurements it
appears that for maximal quantum yields and optimal water
shielding, complex preparation plays a crucial role. In order for
L4ꢀ to fully coordinate the metal ion with all four HOPO units the
complexes should be isolated prior to luminescence measureꢀ
ments. We propose that the lower QY in the in situ complex is not
only due to water quenching but could also be due to a lower deꢀ
gree of covalency (in the kinetic isomer) as indicated by magnetic
circular dichroism measurements. We are currently investigating
if this technique, combined with luminescence measurements,
could be potentially used to probe a Dexter mechanism of energy
transfer.28
ASSOCIATED CONTENT
Supporting Information
Experimental procedures, crystal structure parameters, DFT calꢀ
culation details, mass spectral and photophysical data. This mateꢀ
rial is available free of charge via the Internet at
AUTHOR INFORMATION
Corresponding Author
* Phone +1 510 642 7219, raymond@socrates.berkeley.edu
ACKNOWLEDGMENTS
We thank Benjamin Allred, Manuel SturzbecherꢀHoehne, and Jide
Xu for helpful discussions. The ligand 3,4,3ꢀLI(1,2ꢀHOPO) that
was used for growing xꢀray quality crystals of K[EuL] was a kind
donation from Dr. Rebecca Abergel at LBNL and prepared by
Ash Stevens, Inc. (Detroit, MI, USA, Lot MLꢀ11ꢀ276). This reꢀ
search is supported by U.S. Department of Energy at LBNL under
Contract No. DEꢀAC02ꢀ05CH11231 and NIH grant HL069832.
LJD is grateful for a scholarship of the Alexander von Humboldt
Foundation. ES would like to acknowledge support from the NSF
(CHEꢀ1360046) and BS would like to acknowledge support from
the Munger, Pollock, Reynolds, Robinson, Smith & Yoedicke
Stanford Graduate Fellowship. The small Molecule Xꢀray Crystalꢀ
lography Facility is supported by the NIH Shared Instrumentation
Grant S10ꢀRR027172 and the Molecular Graphics and Computaꢀ
tion Facility wishes to acknowledge the NSF CHEꢀ0233882 and
CHEꢀ0840505 grants. This technology is licensed to Lumiphore,
Inc. in which KNR has a financial interest.
(25) Binnemans, K.; Görller-Walrand, C.; Lucas, J.; Duhamel,
N.; Adam, J.-L. In Proceedings of the 3rd International Confer-
ence on Rare Earth Development and Applications 1995, p 198.
(26) Görller‐Walrand, C.; De Moitié‐Neyt, N.; Beyens, Y.; Bünzli,
J. C. The Journal of Chemical Physics 1982, 77, 2261.
(27) Barbanel, Y. A.; Mikhailo. Nk Zh. Neorg. Khim. 1973, 18,
699.
(28) Dexter, D. L. The Journal of Chemical Physics 1953, 21,
836.
REFERENCES
(1) Zwier, J. M.; Bazin, H.; Lamarque, L.; Mathis, G. Inorg.
Chem. 2014, 53, 1854.
ACS Paragon Plus Environment