C O M M U N I C A T I O N S
Scheme 2. a
which gave the target compounds in high yields (Scheme 2, c and
d).
The present rhodium-catalyzed asymmetric alkynylation using
(triisopropylsilyl)acetylene and DTBM-segphos was successfully
applied to several types of R,â-unsaturated ketones (Table 3). The
reaction of 1-propenyl ketones 1a-1f bearing aryl, alkenyl, or alkyl
substituents on the carbonyl all proceeded well under standard
conditions to give the corresponding â-alkynylketones 4a-4f in
high yields, the enantioselectivity ranging between 91 and 95% ee
(entries 1-6). Linear enones 1g and 1h, which are substituted with
a longer alkyl chain at the â-position, are also good substrates
(entries 7 and 8). Although their reactivity is somewhat lower
toward the present alkynylation, cyclic enones 1i and 1j gave the
corresponding â-alkynylketones 4i and 4j with high ee (entries 9
and 10).
a Conditions: (a) TBAF, THF; (b) cat. RhCl(PPh3)3, EtOH, H2 (1 atm);
(c) iodobenzene, cat. Pd(PPh3)4, cat. CuI, Et3N, 60 °C; (d) 1-azido-4-
chlorobenzene, cat. CuSO4‚5H2O, Na-ascorbate, CH3CN, H2O.
Table 3. Asymmetric Conjugate Addition of
(Triisopropylsilyl)acetylene to Enonesa
In summary, we have succeeded in a conjugate addition of
(triisopropylsilyl)acetylene to R,â-unsaturated ketones with high
enantioselectivity by use of a rhodium/(R)-DTBM-segphos catalyst,
where the sterically bulky substituents on the silicon and phosphorus
atoms suppress the alkyne dimerization.
Acknowledgment. This work was supported in part by a Grant-
in-Aid for Scientific Research on Priority Areas “Advanced
Molecular Transformations of Carbon Resources” from MEXT,
Japan. We thank Takasago International Corporation for the gift
of (R)-DTBM-segphos.
Supporting Information Available: Experimental procedures and
spectroscopic and analytical data for the substrates and products. This
References
(1) (a) Yoshida, K.; Hayashi, T. In Modern Rhodium-Catalyzed Organic
Reactions; Evans, P. A., Ed.; Wiley-VCH: Weinheim, Germany, 2005;
Chapter 3. (b) Hayashi, T.; Yamasaki, K. Chem. ReV. 2003, 103, 2829.
(c) Hayashi, T. Bull. Chem. Soc. Jpn. 2004, 77, 13. (d) Hayashi, T. Pure
Appl. Chem. 2004, 76, 465. (e) Darses, S.; Genet, J.-P. Eur. J. Org. Chem.
2003, 4313. (f) Fagnou, K.; Lautens, M. Chem. ReV. 2003, 103, 169.
(2) (a) Fujimori, S.; Carreira, E. M. Angew. Chem., Int. Ed. 2007, 46, 4964.
(b) Kno¨pfel, T. F.; Zarotti, P.; Ichikawa, T.; Carreira, E. M. J. Am. Chem.
Soc. 2005, 127, 9682. (c) Kwak, Y.-S.; Corey, E. J. Org. Lett. 2004, 6,
3385. (d) Wu, T. R.; Chong, J. M. J. Am. Chem. Soc. 2005, 127, 3244.
(3) For recent examples of rhodium-catalyzed dimerization of alkynes, see:
(a) Nishimura, T.; Guo, X.-X.; Ohnishi, K.; Hayashi, T. AdV. Synth. Catal.
2007, 349, 2669. (b) Katagiri, T.; Tsurugi, H.; Funayama, A.; Satoh, T.;
Miura, M. Chem. Lett. 2007, 36, 830. (c) Weng, W.; Guo, C.; C¸ elenligil-
C¸ etin, R.; Foxman, B. M.; Ozerov, O. V. Chem. Commun. 2006, 197. (d)
Lee, C.-C.; Lin, Y.-C.; Liu, Y.-H.; Wang, Y. Organometallics 2005, 24,
136 and references therein.
(4) Catalytic conjugate addition of terminal acetylenes has been reported only
for â-unsubstituted enones. (a) Nikishin, G. I.; Kovalev, I. P. Tetrahedron
Lett. 1990, 31, 7063. (b) Lerum, R. V.; Chisholm, J. D. Tetrahedron Lett.
2004, 45, 6591.
(5) Nishimura, T.; Katoh, T.; Takatsu, K.; Shintani, R.; Hayashi, T. J. Am.
Chem. Soc. 2007, 129, 14158.
(6) Saito, T.; Yokozawa, T.; Ishizaki, T.; Moroi, T.; Sayo, N.; Miura, T.;
Kumobayashi, H. AdV. Synth. Catal. 2001, 343, 264. DTBM-segphos;
5,5′-bis{di(3,5-di-tert-butyl-4-methoxyphenyl)phosphino}-4,4′-bi-1,3-ben-
zodioxole. Segphos; 5,5′-bis(diphenylphosphino)-4,4′-bi-1,3-benzodioxole.
(7) Werner, H.; Poelsma, S.; Schneider, M. E.; Windmu¨ller, B.; Barth, D.
Chem. Ber. 1996, 129, 647. [Rh(OH)(cod)]2 can be also used as a catalyst
precursor, but [Rh(µ-OAc)(C2H4)2]2 is more convenient to use because
of its facile ligand exchange between the coordinated ethylene and a
bisphosphine ligand.
a Reaction conditions: enone 1 (0.20 mmol), (triisopropylsilyl)acetylene
(0.40 mmol), [Rh(µ-OAc)(C2H4)2]2 (5 mol % of Rh), (R)-DTBM-segphos
(5.5 mol %), 1,4-dioxane (0.4 mL) at 80 °C for 24 h. b Enantiomeric excess
values were determined by HPLC. The absolute configurations of 4b-4j
were assigned by consideration of the stereochemical pathway. c For 42 h.
(8) Binap; 2,2′-bis(diphenylphosphino)-1,1′-binaphthyl.
at the reaction temperature of 40 °C (entries 1 and 2). The
dimerization was much slower with the Rh/DTBM-segphos catalyst,
the conversion of (triisopropylsilyl)acetylene being only 4% under
the same reaction conditions (entries 3 and 4).
The silyl group of 4a obtained here with 91% ee was readily
removed by treatment with tetrabutylammonium fluoride (TBAF)
to give alkynylketone 5 without loss of enantiomeric purity (Scheme
2, a). The absolute configuration of 4a was determined to be S-(-)
by correlation with saturated ketone 6 (Scheme 2; b).11 As examples
of the synthetic application, the terminal acetylene on 5 was
subjected to Sonogashira coupling12 with iodobenzene and a copper-
catalyzed cycloaddition13 with 1-azido-4-chlorobenzene, both of
(9) The formation of 1,4-bis(tert-butyldimethylsilyl)-1-buten-3-yne (E and Z
isomers) with the complete conversion of the silylacetylene was observed
by 1H NMR of the crude reaction mixture.
(10) Senda, T.; Ogasawara, M.; Hayashi, T. J. Org. Chem. 2001, 66, 6852.
DMM-binap; 2,2′-bis{bis(3,5-dimethyl-4-methoxyphenyl)phosphino}-1,1′-
binaphthyl.
(11) The specific rotation of 6 (89% ee); [R]20D -18 (c 1.12, Et2O). Soai, K.;
Okudo, M.; Okamoto, M. Tetrahedron Lett. 1991, 32, 95. (R)-6 of 82%
ee; [R]27 -16.78 (c 1.22, Et2O).
D
(12) Sonogashira, K.; Tohda, Y.; Hagihara, N. Tetrahedron Lett. 1975, 16,
4467.
(13) (a) Barral, K.; Moorhouse, A. D.; Moses, J. E. Org. Lett. 2007, 9, 1809.
(b) Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew.
Chem., Int. Ed. 2002, 41, 2596.
JA710540S
9
J. AM. CHEM. SOC. VOL. 130, NO. 5, 2008 1577