Total Syntheses of (+)-Zampanolide and (+)-Dactylolide
A R T I C L E S
Scheme 1
Scheme 2
requisite olefin geometry needed for zampanolide. Thus,
DIBAl-H reduction of (-)-6 and (+)-7, either separately or
as the mixture, gave diol (+)-8 as a single product in near
quantitative yield. Exhaustive silylation (TBSOTf, 2,6-lutidine)
then proceeded smoothly, to provide the fully protected triol
(-)-9 in 88% yield. Reductive removal of the benzyl group
with lithium di-tert-butylbiphenylide (LDBB),17 followed by
Swern oxidation18 of the liberated hydroxyl [e.g., (-)-10],
completed construction of aldehyde (+)-A in 88% yield for the
final two steps. Fragment (+)-A was thus available in five steps
and 58% overall yield from (-)-5.
Construction of Sulfone B: The C(9-17) Fragment. To
assemble sulfone B we elected to utilize the Petasis-Ferrier
rearrangement,19 recently established in our laboratory as a
powerful, stereocontrolled entry to cis-2,6-disubstituted tetrahy-
dropyrans.20 Success here would represent the first example of
an R,â-unsaturated oxonium intermediate (e.g., 22a; Scheme
4) in the Petasis-Ferrier rearrangement. Toward this end, Brown
asymmetric allylation21 of known aldehyde 1122 installed the
C(11) stereogenic center (zampanolide numbering), both in high
yield and with excellent enantiomeric excess, the latter deter-
mined by Mosher ester analysis (Scheme 3).23 Protection of the
derived homoallylic alcohol (-)-12 (TESCl, imidazole) and
ozonolysis of the terminal olefin delivered aldehyde (+)-14 in
70% yield (two steps). Oxidation (buffered NaClO2)24 and
would be masked as a TBS ether to forestall potential complica-
tions associated with the acidity of the C(6) position. Continuing
with this analysis, three strategic disconnections of the macrolide
ring led to fragments A, B, C, and the commercially available
diethylphosphonoacetic acid (4). In the synthetic direction, we
envisioned macrolide construction via a Kocienski-Julia ole-
fination11 of aldehyde A with sulfone B, followed in turn by
nucleophilic opening of epoxide C with a mixed cyano-Gilman
cuprate,12 derived from vinyl bromide AB, incorporation of an
acyl phosphonate via Mitsunobu inversion at C(19),13 and a
Horner-Wadsworth-Emmons (HWE) macrocyclization.14 This
highly convergent design would obviate the necessity to protect
and then unmask the C(19) hydroxyl, a measure unavoidable
involving approaches to the macrocycle via Mitsunobu macro-
lactonization.
Preparation of Aldehyde A: The C(3-8) Fragment. Our
point of departure for construction of A was the known
alkynoate (-)-5, prepared via the procedure of Ogasawara et
al.15 Michael addition of lithium dimethylcuprate (Me2CuLi)16
to the acetylenic ester furnished the expected enoate (-)-6 and
the unusual macrodiolide (+)-7 in 78% and 8% yield, respec-
tively (Scheme 2). Fortuitously, (+)-7 also possessed the
(17) (a) Freeman, P. K.; Hutchinson, L. L. J. Org. Chem. 1980, 45, 1924. (b)
Ireland, R. E.; Noreck, D. W.; Mandell, G. S. J. Am. Chem. Soc. 1985,
107, 3285.
(18) Mancuso, A. J.; Swern, D. Synthesis 1981, 165.
(19) Petasis, N. A.; Lu, S.-P. Tetrahedron Lett. 1996, 37, 141.
(20) (a) Smith, A. B., III; Verhoest, P. V.; Minbiole, K. P.; Lim, J. J. Org. Lett.
1999, 1, 909. (b) Smith, A. B., III; Minbiole, K. P.; Verhoest, P. V.;
Beauchamp, T. J. Org. Lett. 1999, 1, 913. (c) Smith, A. B., III; Verhoest,
P. V.; Minbiole, K. P.; Schelhaas, M. J. Am. Chem. Soc. 2001, 123, 4834.
(d) Smith, A. B., III; Verhoest, P. V.; Minbiole, K. P.; Schelhaas, M. J.
Am. Chem. Soc. 2001, 123, 10942.
(11) Blakemore, P. R.; Cole, W. J.; Kocienski, P. J.; Morley, A. Synlett 1998,
26.
(12) (a) Bartlett, P. A.; Meadows, J. D.; Ottow, E. J. Am. Chem. Soc. 1984,
106, 5304. (b) Lipshutz, B. H.; Kozlowski, J. A.; Parker, D. A.; Nguyen,
S. L.; McCarthy, K. E. J. Organomet. Chem. 1985, 285, 437.
(13) Mitsunobu, O. Synthesis 1981, 1.
(14) (a) Masamune, S.; Bates, G. S.; Corcoran, J. W. Angew. Chem. 1977, 89,
608. (b) Burry, K. F.; Cardone, R. A.; Chen, W. Y.; Rosen, P. J. Am. Chem.
Soc. 1978, 100, 7069.
(15) Oizumi, M.; Takahashi, M.; Ogasawara, K. Synlett 1997, 1111.
(16) Corey, E. J.; Katzenellenbogen, J. J. Am. Chem. Soc. 1969, 91, 1851.
(21) (a) Brown, H. C.; Jadhav, P. K. J. Am. Chem. Soc. 1983, 105, 2092. (b)
Brown, H. C.; Ramachandran, P. V. Pure Appl. Chem. 1991, 63, 307.
(22) Boeckman, R. K., Jr.; Charette, A. B.; Asberom, T.; Johnston, B. H. J.
Am. Chem. Soc. 1987, 109, 7553.
(23) (a) Dale, J. A.; Mosher, H. S. J. Am. Chem. Soc. 1973, 95, 512. (b) Sullivan,
G. R.; Dale, J. A.; Mosher, H. S. J. Org. Chem. 1973, 38, 2143. (c) Ohtani,
I.; Kusumi, T.; Kashman, Y.; Kakisawa, H. J. Am. Chem. Soc. 1991, 113,
4092.
(24) Kraus, G. A.; Taschner, M. J. J. Org. Chem. 1980, 45, 1175.
9
J. AM. CHEM. SOC. VOL. 124, NO. 37, 2002 11103