C O M M U N I C A T I O N S
Scheme 3
conversion might include initial fluoride-induced elimination of the
elements of Ts-TIPS to afford an unobserved dihydropareitropone
intermediate 15. Apparently, air oxidation of 15 is facile, and the
fully aromatic isoquinoline core of 1 provides enough of a
thermodynamic sink to drive the reaction to the desired target. The
spectral data (1H NMR, 13C NMR) for synthetic pareitropone
matched those reported in the literature for the naturally derived
material.6a
In summary, the tropoloisoquinoline alkaloid pareitropone has
been synthesized for the first time in a 14-step route from
commercially available 2,3,4-trimethoxybenzoic acid (7% overall
yield). The chemistry features a rather cryptic use of alkynyliodo-
nium salts in the context of cycloheptatrienylidene synthesis from
aryl ring precursors.
Acknowledgment. We thank the National Institutes of Health
(GM37681) for financial support.
Supporting Information Available: Characterization data (1H and
13C NMR, IR, LRMS, HRMS, or elemental analysis) and copies of 1H
and 13C NMR spectra for 1, 9-12, and 14. This material is available
References
(1) (a) Zhdankin, V. V.; Stang, P. J. Chem. ReV. 2002, 102, 2523. (b)
Varvoglis, A. Tetrahedron 1997, 53, 1179.
(2) The heat of formation of the parent compound vinylidene (H2CdC:) can
be estimated through a combination of spectroscopy and calculation to
be ∼100 kcal/mol, see: Hayes, R. L.; Fattal, E.; Govind, N.; Carter, E.
A. J. Am. Chem. Soc. 2001, 123, 641 and references therein.
(3) (a) Kirmse, W. Angew. Chem., Int. Ed. Engl. 1997, 36, 1164. (b) Stang,
P. J. Chem. ReV. 1978, 78, 333.
(4) (a) Feldman, K. S.; Mareska, D. A. J. Am. Chem. Soc. 1998, 120, 4027.
(b) Feldman, K. S.; Mareska, D. A. J. Org. Chem. 1999, 64, 5650.
(5) (a) Feldman, K. S.; Bruendl, M. M.; Schildknegt, K.; Bohnstedt, A. C. J.
Org. Chem. 1996, 61, 5440. (b) Gilbert, J. C.; Blackburn, B. K. J. Org.
Chem. 1986, 51, 4089. (c) Gilbert, J. C.; Blackburn, B. K. Tetrahedron
Lett. 1990, 31, 4727.
(6) (a) Morita, H.; Takeya, K.; Itokawa, H. Bioorg. Med. Chem. Lett. 1995,
5, 597. (b) Silverton, J. V.; Kabuto, C.; Buck, K. T.; Cava, M. P. J. Am.
Chem. Soc. 1977, 99, 6708. (c) Menachery, D.; Cava, M. P. Heterocycles
1980, 14, 943. (d) Morita, H.; Matsumoto, K.; Takeya, K.; Itokawa, H.;
Iitaka, Y. Chem. Lett. 1993, 339. (e) Morita, H.; Matsumoto, K.; Takeya,
K.; Itokawa, H.; Iitaka, Y. Chem. Pharm. Bull. 1993, 41, 1418.
(7) Brown, R. F. C.; Eastwood, F. W.; Harrington, K. J.; McMullen, G. L.
Aust. J. Chem. 1974, 27, 2393.
(8) (a) Banwell, M. G.; Hamel, E.; Ireland, N. K.; Mackay, M. F. Heterocycles
1994, 39, 205. (b) Evans, D. A.; Hart, D. J.; Koelsch, P. M.; Cain, P. A.
Pure Appl. Chem. 1979, 51, 1285. (c) Molina, P.; Garcia-Zafra, S.;
Fresneda, P. M. Synlett 1995, 43. (d) Boger, D. L.; Takahashi, K. J. Am.
Chem. Soc. 1995, 117, 12452. (e) Lee, J. C.; Cha, J. K. J. Am. Chem.
Soc. 2001, 123, 3243. (f) For a related strategy to the tropone-fused
polycyclic natural product hainanolidol, see: Frey, B.; Wells, A. P.;
Rogers, D. H.; Mander, L. N. J. Am. Chem. Soc. 1998, 120, 1914.
(9) Feldman, K. S.; Perkins, A. L. Tetrahedron Lett. 2001, 42, 6031.
(10) (a) Meyers, A. I.; Gant, T. G. Tetrahedron 1994, 50, 2297. (b) Reuman,
M.; Meyers, A. I. Tetrahedron 1985, 41, 837.
the oxazoline with tosylaziridine (in lieu of ethylene oxide) afforded
excellent yields of the desired ethyltosylamide appendage, but this
promising intermediate proved to be a dead end.
A more indirect approach to tosylamide introduction, which
passed through the alkynol 11, was pursued. Mitsunobu-type
displacement of the alcohol in 11 with TsNHFmoc led to the
secondary tosylamide directly, as apparently the Fmoc tosylimide
intermediate suffers decarboxyfluorenylation under the mildly basic
reaction conditions.14 Stannylation of the terminal alkyne in the
intermediate tosylamide proceeded uneventfully, delivering the
cyclization precursor 12 in moderate yield.
Exposure of this alkynylstannane 12 to Stang’s reagent (PhI-
(CN)OTf)15 at -40 °C followed by solvent removal at this
temperature resulted in formation of the iodonium salt 13 as a
yellow oily solid which decomposed upon warming to ca. 0 °C,
Scheme 3. Dissolution of this residue in DME at -40 °C preserved
the integrity of this sensitive species, and subsequent treatment with
LiNTMS2 triggered a cascade of reactions that presumably pass
through intermediates of the type illustrated in Scheme 1 to deliver
the cycloheptatrienylidene product 14 in good yield as the only
isolable material. No evidence for an alternative phenanthrene-type
product (cf. 6) could be gleaned from inspection of the crude
reaction mixture’s 1H NMR spectrum. Perhaps this alkylidenecar-
bene reaction selectivity can be attributed simply to proximity, as
a comparison of the key carbene-arene carbon and carbene-
hydrogen distances, revealed by an electronic structure calculation
on the model system 16,16 argues for reaction at the former site.
Unexpectedly, the dark blue-green tetraene 14 could be converted
to the natural product pareitropone (1) by simple treatment with
KF on Al2O3 at -78 °C with subsequent warming to ambient
temperature. A plausible sequence of events that describes this
(11) (a) Ladd, D. L.; Weinstock, J.; Wise, M.; Gessner, G. W.; Sawyer, J. L.;
Flaim, K. E. J. Med. Chem. 1986, 29, 1904. (b) Patel, H. A.; MacLean,
D. B. Can. J. Chem. 1983, 61, 7.
(12) Abarbri, M.; Thibonnet, J.; Be´rillon, L.; Dehmel, F.; Rottla¨nder, M.;
Knochel, P. J. Org. Chem. 2000, 65, 4618.
(13) We thank Dr. Romina Di Florio for performing these experiments. Details
will be provided in a full account of this work.
(14) Bach, T.; Kather, K. J. Org. Chem. 1996, 61, 7642.
(15) Stang, P. J.; Zhdankin, V. V. J. Am. Chem. Soc. 1991, 113, 4571.
(16) A density functional calculation using a perturbative Becke-Perdew
model, and the DN* basis set in Spartan 5.0 was employed to arrive at
the energy minimized structure 16.
JA0277430
9
J. AM. CHEM. SOC. VOL. 124, NO. 39, 2002 11601