622
A. K. Dutta et al. / Bioorg. Med. Chem. Lett. 12 (2002) 619–622
Table 1. Inhibition constants for binding to the cloned D2L and D3
receptors expressed in HEK cells by displacing [3H]spiperone. Results
are meansÆSEM for three experiments each performed in triplicate
2. Seeman, P.; Tol Van, H. TIPS 1994, 15, 264.
3. Kebabian, J. W.; Calne, D. N. Nature 1979, 277, 93.
4. Sokoloff, P.; Giros, B.; Martres, M.-P.; Bouthenet, M.-L.;
Schwartz, J.-C. Nature 1990, 347, 146.
5. Giros, B.; Matres, M. P.; Sokoloff, P.; Scwartz, J. C. R.
Acad. Sci. [III] 1990, 311, 501.
6. Jenner, P.; Marsden, C. D. In Drugs in Central Nervous
System Disorders; Horwell, D. C., Ed.; Marcel Dekker: New
York, 1985; p 149.
7. Suzuki, M.; Hurd, Y. L.; Sokoloff, P.; Schwartz, J.-C.;
Gordan, S. Brain. Res. 1998, 779, 58.
8. Schwartz, J.-C.; Levesque, D.; Martes, M.-P.; Sokoloff, P.
Clin. Neuropharmacol. 1993, 16, 295.
9. Levant, B. Pharmacol. Rev. 1997, 49, 231.
10. Caine, S. B.; Koob, G. F. Science 1993, 260, 1814.
11. Caine, S. B.; Koob, G. F. Behav. Pharmacol. 1995, 6, 333.
12. Pilla, M.; Perachon, S.; Sautel, F.; Garrido, F.; Mann, A.;
Wermuth, C.; Schwartz, J.-C.; Everitt, B. J.; Sokoloff, P. Nat-
ure 1999, 400, 371.
Compd
D2L HEK Cells
[3H]spiperone
Ki (nM)
D3 HEK Cells
[3H]spiperone
Ki (nM)
D
2L/D3
8
622Æ102
782Æ42
50.2Æ7.1
756Æ48
12.4
1
6.3
17.2
48.9
121.7
30
3.8
10a
10b
12a
12b
15a
15b
19a
19b
19c
354Æ2
55.7Æ5.5
14.2Æ1.7
1.40Æ0.14
1.75Æ0.34
3.79Æ0.40
2.26Æ0.50
3.59Æ0.58
Æ0.04
245Æ26
68.4Æ7.6
213Æ26
114Æ8
8.78Æ0.81
7.37Æ0.27
27.4Æ1.01.13
2.0
24.2
methylene linker chain, was more potent and selective at
the D3 receptor compared to 19a,b. These results are
different from previous observations in a different series
of compounds, indicating that the presence of the 2,3-
dichlorophenyl moiety imparted more selectivity for D3
receptors previously.22
13. Canon, J. G.; Lee, T.; Goldman, H. D.; Costall, B.; Nay-
lor, R. J. J. Med. Chem. 1977, 20, 1111.
14. McDermed, J.; McKenzie, G.; Phillips, A. J. Med. Chem.
1975, 18, 362.
15. Levesque, D.; Diaz, J.; Pilon, C.; Martres, M.-P.; Giros,
B.; Souil, E.; Schott, D.; Morgat, J.-L.; Schwartz, J.-C.;
Sokoloff, P. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 8155.
Burris, K. D.; Pacheco, M. A.; Filtz, T. M.; Kung, M.-P.;
Kung, H. F.; Molinoff, P. B. Neuropsychopharmacology 1995,
12, 335. Audinot, V.; Newman-Tancredi, A.; Gobert, A.;
Rivet, J.-M.; Brocco, M.; Lejeune, F.; Gluck, L.; Desposte, I.;
Bervoets, K.; Dekeyne, A.; Millan, M. J. J. Pharmacol. Exp.
Ther. 1998, 287, 187.
16. Murray, P. J.; Harrison, L. A.; Johnson, M. R.; Robert-
son, G. M.; Scopes, D. I.; Bull, D. R.; Graham, E. A.; Hayes,
A. G.; Kilpatrick, G. J.; Dass, I. D.; Large, C.; Sheehan, M. J.;
Stubbs, C. M.; Turpin, M. P. Bioorg. Med. Chem. Lett. 1995,
5, 219.
17. Teran, C.; Santana, L.; Uriarte, E.; Fall, Y.; Unelius, L.;
Tolf, B.-R. Bioorg. Med. Chem. Lett. 1998, 8, 3567.
18. Homan, E. J.; Copinga, S.; Elfstrom, L.; Veen, T.; Hal-
lema, J.-P.; Mohell, N.; Unelius, L.; Johansson, R.; Wikstrom,
H. V.; Grol, C. J. Bioorg. Med. Chem. 1998, 6, 2111.
19. All new compounds exhibited satisfactory spectral and
elemental analysis data. 7-Hydroxyl-2-[N-propyl-(N-(4-phe-
nylpiperazin-1-yl)-ethyl)amino]tetralin 15a. 1H NMR (CDCl3)
0.86–0.91 (t, J=7.2 Hz, 3H, CH3CH2CH2N), 1.43–1.50(m,
4H), 1.89–1.93 (m, 2H), 2.46–2.51 (t, J=7.5 Hz, 2H, NCH2),
2.53–2.68 (m, 6H), 2.70–2.74 (t, J=4.8 Hz, 4HN(CH2)2), 2.83–
2.88 (m, 1H), 3.23–3.26 (t, J=4.8 Hz, 4H, N(CH2)2), 6.45–
6.56 (m, 2H, Ar-H), 6.83–6.93 (m, 4H, Ar-H), 7.23–7.26 (m,
2H,ꢀAr-H). Free base was converted into its HCl salt, mp 143–
146 C. Anal. (C27H35N3Oꢁ 3HClꢁ 0.9H2O) calcd: C, 57.83; H,
7.72; N, 8.09; Found: C, 57.88; H, 7.52; N, 7.90.
20. Dutta, A. K.; Neisewander, J.; Fuchs, R.; Reith, M. E. A.
Med. Chem. Res. 2000, 10, 208.
The amide piperazines 10a,b had a weak binding affinity
for the dopamine receptor subtypes, while the cyano com-
pound 8 showed some modest binding activity (Table 1).
In this report, we have carried out a brief SAR study
with hybrid piperazine–aminotetralin molecules. Our
results indicated that the compounds with a 2-methyl-
ene linker as in racemic 15a showed high binding activ-
ity at the D3 receptor while being more selective for D3
over D2 receptors. It is evident from our results that the
length of methylene chain linker played an important
role in selectivity. This might indicate subtle differences
in molecular structures between these two receptor sub-
types, which could have been exploited for more favor-
able interactions by the shorter 2-methylene linker
compound with the D3 receptor. We plan to carry out
the functional activities in the future to evaluate for
agonist, antagonist, and partial agonist properties of
these compounds for D2/D3 receptors. We are now
currently exploring this newly developed template to
generate further analogues for selective action at dopa-
mine receptor subtypes.
Acknowledgements
We are grateful to Janet L. Berfield for performing the
DA receptor binding assays, and we thank Dr. Val J.
Watts and Dr. Kim A. Neve at the Oregon Health Sci-
ences University, Portland, OR, for providing us with the
HEK-293 cells stably expressing D2L and D3 receptors.
21. Receptor binding studies were carried out as in ref 20
based on ref 23. Briefly, competition experiments were run
with HEK-293 cell membranes at a final protein concentration
of 25 (D2) or 65 (D3) mg/mL and the radioligand [3H]spiperone
at 0.48 nM (Kd=0.18 nM for D2 and 0.40 nM for D3). Ki
values were calculated from IC50 values by the Cheng–Prusoff
equation as in ref 20.
22. Yuan, J.; Chen, X.; Brodbeck, R.; Primus, R.; Braun, J.;
Wasley, J. F.; Thurkauf, A. Bioorg. Med. Chem. Lett. 1998, 8,
2715.
References and Notes
23. Watts, V. J.; Lawler, C. P.; Knoerzer, T.; Mayleben,
M. A.; Neve, K. A.; Nichols, D. E.; Mailman, R. B. Eur. J.
Pharmacol. 1993, 239, 271.
1. Civelli, O.; Bunzow, J. R.; Grandy, D. K. Annu. Rev.
Pharmacol. Toxicol. 1993, 32, 281.