C O M M U N I C A T I O N S
Scheme 1a
a Reagents and conditions: (a) i. LiAlH4, Et2O, reflux; ii. HCl(aq). (b) (Boc)2O, TEA, THF, reflux, 52%. (c) i. Li/NH3; ii. HCl(aq), 100%. (d) Me2SnCl2,
KOH/H2O/EtOH, 94%. (e) SOCl2, THF, 72%. (f) CH3CN, hν, 75%. (g) TFA, CH2Cl2, 92%.
Scheme 2
varacin C can be promoted by an acidic environment. Tumor cells
possess a lower extracellular pH than normal cells, which is an
intrinsic feature of the tumor phenotype and caused by alterations
either in acid export or in clearance of extracellular acid.3
Pharmaceutical agents may be particularly desirable in cancer
Table 1. Cytotoxic Property of Varacin C toward Certain Cancer
chemotherapy if they undergo selective activation by the acidic
Cell Lines
microenvironments around tumor tissue.4 Accordingly, we hope that
cell type
cell line
IC50 (nM) varacin C
IC50 (nM) doxorubicin
the mode of action of varacin C described in this report may
stimulate the design of a new generation of acid-activated, tumor-
activated prodrugs.
colon cancer
prostate cancer
breast cancer
bladder cancer
lung cancer
renal cell
HT-29
PC-3
MDA231
UMUC3
PACA2
A549
11.9
2.4
2.9
8.4
7.2
41.4
41.8
3.5
2.2
17.1
2.4
Acknowledgment. We thank The Hong Kong Polytechnic
University ASD Fund and the Hong Kong UGC Areas of Excel-
lence Fund (Project No. AoE P/10-01) for financial support of this
study and Drs. Alan Nadin (Merck, UK) and Jinyou Xu (Merck,
U.S.A.) for helpful discussions.
48.2
24.9
carcinoma
A4982LM
46.0
efficient hydroxyl radical (OH•) scavengers methanol (lane 6),
ethanol (lane 7), and mannitol (lane 9).8,9 Besides these oxygen
radical scavengers, the metal chelator diethylenetriaminepentaacetic
acid (DETAPAC) also inhibited the varacin C-promoted DNA-
cleavage reaction (lane 10). DETAPAC is known to sequester
adventitious traces of transition metals, thereby preventing them
from catalyzing the conversion of peroxide to hydroxyl radicals.8,9
On the basis of these observations, we suggest tentatively that
varacin C in concert with a thiol leads to the conversion of
molecular oxygen to hydrogen peroxide, which is then further
converted to the DNA-cleaving hydroxyl radical by a trace-metal-
dependent Fenton reaction (Scheme 2).10 This proposed mechanism
is analogous to the mode of action of antibiotic leinamycin11
established by Gates and associates earlier.
It should be pointed out that addition of superoxide dismutase
(SOD) (an enzyme which decomposes superoxide)8,12 to the reaction
mixture did not slow the rate of the DNA-cleavage reaction (lane
11, Figure 1C). This observation does not rule out the possibility
that superoxide radical is involved in the DNA-cleaving process
by varacin C. This is because the hydrogen peroxide produced by
SOD from superoxide could itself lead to DNA cleavage through
a Fenton reaction in which a thiol serves as the reducing reagent,
a phenomenon observed in the DNA-cleaving reaction by leinama-
cin.11 Further characterization of the mechanism by which varacin
C cleaves DNA is still in progress.
The cytotoxic activity of varacin C toward seven different human
cancer cell lines was evaluated by determining the concentration
(IC50) of the antibiotic at which 50% of cell proliferation was
inhibited, and comparing these values with data obtained for
doxorubicin in the same cell lines. As shown in Table 1, varacin C
is more potent than the clinically used antitumor agent doxorubicin
in cell lines of colon cancer, prostate cancer, human breast cancer,
lung cancer, and carcinoma, exhibiting IC50 values against these
cell lines in the range 2.4-48.2 nM.
In conclusion, our studies demonstrate for the first time that
varacin C is capable of causing DNA cleavage effectively. This
may explain the observed potent cytotoxic activities of varacin C
(see Table 1) and its antifungal and antimicrobial activities against
Candida albicans and Bacillus subtilus.1 Most significantly, the
current work reveals that the rate of this DNA-cleaving course by
Supporting Information Available: Experimental details of the
synthesis of varacin C, characterization data for all compounds, Figure
S1, and Scheme S1 (PDF). This material is available free of charge
References
(1) Makarieva, T. N.; Stonik, V. A.; Dmitrenok, A. S.; Grebnev, B. B.; Isakov,
V. V.; Rebachyk, N. M. J. Nat. Prod. 1995, 58, 254-258.
(2) (a) Davidson, B. S.; Molinski, T. F.; Barrows, L. R.; Ireland, C. M. J.
Am. Chem. Soc. 1991, 113, 4709-4710. (b) Behar V.; Danishefsky, S. J.
J. Am. Chem. Soc. 1993, 115, 7017-7018. (c) Ford, P. W.; Davidson, B.
S. J. Org. Chem. 1993, 58, 4522-4523. (d) Toste, F. D.; Still, W. J. J.
Am. Chem. Soc. 1995, 117, 7261-7262. (e) Chatterji, T.; Gates, K. S.
Bioorg. Med. Chem. Lett. 1998, 8, 535-538.
(3) (a) Stubbs, M.; McSheehy, P. M. J.; Griffiths, J. R.; Bashford, C. L. Mol.
Med. Today. 2000, 6, 15-19. (b) Tannock, I.; Boyer, M.; Kurari, A.;
Maisorn, R.; Newell, K. Radiation Research. In Proceedings of 9th
International Congress; Dewey, W. C., Ed; Academic: San Diego, CA,
1992; Vol. 2, pp 813-818.
(4) Denny, W. A. Eur. J. Med. Chem. 2001, 36, 577-595.
(5) Ford, P. W.; Narbut, M. R.; Belli, J.; Davidson, B. S. J. Org. Chem. 1994,
59, 5955-5960.
(6) (a) Yomoji, N.; Takahashi, S.; Chida, S.; Ogawa, S.; Sato, R. J. Chem.
Soc., Perkin Trans. 1 1993, 17, 1995-2000. (b) Yomoji, N.; Satoh, S.;
Ogawa, S.; Sato, R. Tetrahedron Lett. 1993, 34, 673-676. (c) Ogawa,
S.; Kikuchi, T.; Sasaki, A.; Chida, S.; Sato, R. Tetrahedron Lett. 1994,
35, 5469-5472. (d) Ogawa, S.; Yomoji, N.; Chida, S.; Sato, R. Chem
Lett. 1994, 3, 507-510. (e) Ogawa, S.; Ohmiya, T.; Kikuchi, T.;
Kawaguchi, A.; Saito, S.; Sai, A.; Ohyama, N.; Kawai, Y.; Niizuma, S.;
Nakajo, S.; Kimura, T.; Sato, R. J. Organomet. Chem. 2000, 611, 136-
145. (f) Sato, R.; Ohyama, T.; Kawagoe, T.; Baba, M.; Nakajo, S.; Kimura,
T.; Ogawa, S. Heterocycles 2001, 55, 145-154.
(7) (a) Kaku, T.; Jiang, M. H.; Hada, J.; Morimoto, K.; Hayashi, Y. Eur. J.
Pharmacol. 2001, 413, 199-205. (b) Hada, J.; Kaku, T.; Jiang, M.-H.;
Morimoto, K.; Hayashi, Y.; Nagai, K. Amino Acids 2000, 19, 547-559.
(c) Baudoin, O.; Teulade-Fichou, M. P.; Vigneron, J.-P.; Lehn, J.-M. Chem
Commun. 1998, 21, 2349-2350.
(8) Behroozi, S.; Kim, W.; Dannaldson, J.; Gates, K. S. Biochemistry 1996,
35, 1768-1774.
(9) (a) Mandell, G. J. Clin. InVest. 1975, 55, 561-566. (b) Halliwell, B.;
Gutteridge, J. M. C. Methods Enzymol. 1990, 186, 1-85. (c) Yu, T. W.;
Anderson, D. Mutat. Res. 1997, 379 , 201-210.
(10) (a) Mitra, K.; Kim, W.; Daniels, J. S.; Gates, K. S. J. Am. Chem. Soc.
1997, 119, 11691-11692. (b) Wu, S.; Greer, A. J. Org. Chem. 2000, 65,
4883-4887. (c) Breydo, L.; Zang, H.; Mitra, K.; Gates, K. S. J. Am. Chem.
Soc. 2001, 123, 2060-2061.
(11) (a) Hara, M.; Saitoh, Y.; Nakano, H. Biochemistry 1990, 29, 5676-5681.
(b) Gates, K. S. Chem. Res. Toxicol. 2000, 13, 953-956.
(12) Fridovich, I. Acc. Chem. Res. 1972, 5, 321-326.
JA020531I
9
J. AM. CHEM. SOC. VOL. 124, NO. 47, 2002 13973