Journal of the American Chemical Society
Communication
665. (c) Albrecht, M.; Burk, S.; Weis, P. Synthesis 2008, 2963.
(d) Hamilton, T. D.; MacGillivray, L. R. Cryst. Growth Des. 2004, 4,
419.
solids from intrinsically porous cages is of significance but
remains challenging.6b Despite the limited enantioselectivity,
the present crystalline cage materials represent a new
generation of chiral porous solids that are capable of chiral
separation of different types of molecules simultaneously.5f,16
Further studies on separating other racemic compounds and
understanding the enantioselective processes are underway.
In conclusion, we have presented the assembly of homochiral
quadruple-stranded helicate cages from metallosalans and
demonstrated their enantioselective abilities to recognize
enantiomers of amino acids via fluorescence enhancement in
solution and to separate small racemic organic molecules by
adsorption in the crystalline state. The readily tunability of such
a modular approach based on metallosalan units promises to
lead a number of chiral assemblies with unique and practically
useful enantioselective functions.
(5) (a) Nishioka, Y.; Yamaguchi, T.; Kawano, M.; Fujita, M. J. Am.
Chem. Soc. 2008, 130, 8160. (b) Leung, D. H.; Bergman, R. G.;
Raymond, K. N. J. Am. Chem. Soc. 2006, 128, 9781. (c) Nakamura, A.;
Inoue, Y. J. Am. Chem. Soc. 2005, 127, 5338. (d) Davis, A. V.; Fiedler,
D.; Ziegler, M.; Terpin, A.; Raymond, K. N. J. Am. Chem. Soc. 2007,
129, 15354. (e) Fiedler, D.; Leung, D. H.; Bergman, R. G.; Raymond,
K. N. J. Am. Chem. Soc. 2004, 126, 3674. (f) Liu, T.; Liu, Y.; Xuan, W.;
Cui, Y. Angew. Chem., Int. Ed. 2010, 49, 4121.
(6) (a) Iwasawa, T.; Hooley, R. J.; Rebek, J., Jr. Science 2007, 317,
493. (b) Holst, R.; Trewin, A.; Cooper, A. I. Nat. Chem. 2010, 2, 915.
(c) Liu, X. J.; Warmuth, R. J. Am. Chem. Soc. 2006, 128, 14120.
(d) Liu, Y. Z.; Hu, C. H.; Comotti, A.; Ward, M. D. Science 2011, 333,
436. (e) Icli, B.; Christinat, N.; Tonnemann, J.; Schuttler, C.;
Scopelliti, R.; Severin, K. J. Am. Chem. Soc. 2009, 131, 3154. (f) Jin, Y.;
Voss, B. A.; Jin, A.; Long, H.; Noble, R. D.; Zhang, W. J. Am. Chem.
Soc. 2011, 133, 6650.
(7) (a) Piguet, C.; Bernardinelli, G.; Hopfgartner, G. Chem. Rev.
1997, 97, 2005. (b) Albrecht, M. Chem. Rev. 2001, 101, 3457. (c) Xi,
X.; Fang, Y.; Dong, T.; Cui, Y. Angew. Chem., Int. Ed. 2011, 50, 1154.
(d) Howson, S. E.; Bolhuis, A.; Brabec, V.; Clarkson, G. J.; Malina, J.;
Rodger, A.; Scott, P. Nat. Chem. 2012, 4, 31.
(8) (a) Koshevoy, I. O.; Haukka, M.; Selivanov, S. I.; Tunik, S. P.;
Pakkanen, T. A. Chem. Commun. 2010, 46, 8926. (b) Crowley, J. D.;
Gavey, E. L. Dalton Trans. 2010, 39, 4035. (c) Scherer, M.; Caulder, D.
L.; Johnson, D. W.; Raymond, K. N. Angew. Chem., Int. Ed. 1999, 38,
1588. (d) Caulder, D. L.; Raymond, K. N. Angew. Chem., Int. Ed. Engl.
1997, 36, 1440.
ASSOCIATED CONTENT
* Supporting Information
■
S
Experimental procedures and characterization data. This
material is available free of charge via the Internet at http://
AUTHOR INFORMATION
Corresponding Author
■
Notes
(9) (a) Baleizao, C.; Garcia, H. Chem. Rev. 2006, 106, 3987.
(b) Clever, G. H.; Polborn, K.; Carell, T. Angew. Chem., Int. Ed. 2005,
44, 7204.
(10) (a) Matsumoto, K.; Saito, B.; Katsuki, T. Chem. Commun. 2007,
3619. (b) Egami, H.; Oguma, T.; Katsuki, T. J. Am. Chem. Soc. 2010,
132, 5886.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by the NSFC (21025103 and
20971085), the “973” Program (2009CB930403), and the
Shanghai Science and Technology Committee (10DJ1400100).
(11) Spek, A. L. J. Appl. Crystallogr. 2003, 36, 7.
(12) (a) Rajca, A.; Miyasaka, M.; Pink, M.; Wang, H.; Rajca, S. J. Am.
Chem. Soc. 2004, 126, 15211. (b) Dietrich-Buchecker, C.; Rapenne, G.;
Sauvage, J.-P.; De Cian, A.; Fischer, J. Chem.Eur. J. 1999, 5, 1432.
(13) Accetta, A.; Corradini, R.; Marchelli, R. Top. Curr. Chem. 2011,
300, 175.
(14) Preliminary X-ray analysis of a single crystal obtained by slow
evaporation of a solution of 1a and Ala showed that it is isostructural
to 1a, in which the Cl anions bound to Zn ions are not replaced by
Ala. It is likely that the ligand displacement mechanism13 might not be
responsible for the fluorescence enhancement, although it could not be
excluded absolutely.
(15) (a) Soloshonok, V. A.; Ellis, T. K.; Ueki, H.; Ono, T. J. Am.
Chem. Soc. 2009, 131, 7208. (b) Ryu, D.; Park, E.; Kim, D.-S.; Yan, S.;
Lee, J. Y.; Chang, B.-Y.; Ahn, K. H. J. Am. Chem. Soc. 2008, 130, 2394.
(16) (a) Liu, Y.; Xuan, W.; Cui, Y. Adv. Mater. 2010, 22, 4112.
(b) Xiong, R.; You, X.; Abrahams, B. F.; Xue, Z.; Che, C. Angew.
Chem., Int. Ed. 2001, 40, 4422. (c) Li, G.; Yu, W.; Cui, Y. J. Am. Chem.
Soc. 2008, 130, 4582. (d) Nuzhdin, A. L.; Dybtsev, D. N.; Bryliakov, K.
P.; Talsi, E. P.; Fedin, V. P. J. Am. Chem. Soc. 2007, 129, 12958.
(e) Bradshaw, D.; Prior, T. J.; Cussen, E. J.; Claridge, J. B.; Rosseinsky,
M. J. J. Am. Chem. Soc. 2004, 126, 6106. (f) Vaidhyanathan, R.;
Bradshaw, D.; Rebilly, J.; Barrio, J. P.; Gould, J. A.; Berry, N. G.;
Rosseinsky, M. J. Angew. Chem., Int. Ed. 2006, 45, 6495.
(g) Kaczorowski, T.; Justyniak, I.; Lipiska, T.; Lipkowski, J.; Lewiski,
J. J. Am. Chem. Soc. 2009, 131, 5393. (h) Seo, J. S.; Whang, D.; Lee, H.;
Jun, S. I.; Oh, J.; Jeon, Y. J.; Kim, K. Nature 2000, 404, 982. (i) Evans,
O. R.; Ngo, H. L.; Lin, W. J. Am. Chem. Soc. 2001, 123, 10395.
(j) Xiang, S.; Zhang, Z.; Zhao, C.; Hong, K.; Zhao, X.; Ding, D.; Xie,
M.; Wu, C.; Das, M. C.; Gill, R.; Thomas, K. M.; Chen, B. Nat.
Commun. 2011, 2, 204.
REFERENCES
■
(1) (a) Hof, F.; Craig, S. L.; Nuckolls, C.; Rebek, J., Jr. Angew. Chem.
Int., Ed. 2002, 41, 1488. (b) Moberg, C. Angew. Chem., Int. Ed. 2006,
45, 4721. (c) Pu, L. Acc. Chem. Res. 2012, 45, 150.
(2) (a) Chakrabarty, R.; Mukherjee, P. S.; Stang, P. J. Chem. Rev.
2011, 111, 6810. (b) Fujita, M.; Tominaga, M.; Hori, A.; Therrien, B.
Acc. Chem. Res. 2005, 38, 369. (c) Ward, M. D. Chem. Commun. 2009,
4487. (d) Pluth, M. D.; Bergman, R. G.; Raymond, K. N. Acc. Chem.
Res. 2009, 42, 1650. (e) Koblenz, T. S.; Wassenaar, J.; Reek, J. N. H.
Chem. Soc. Rev. 2008, 37, 247. (f) Saalfrank, R. W.; Maid, H.; Scheurer,
A. Angew. Chem., Int. Ed. 2008, 47, 8794. (g) Pascu, G. I.; Hotze, A. C.
G.; Sanchez-Cano, C.; Kariuki, B. M.; Hannon, M. J. Angew. Chem., Int.
Ed. 2007, 46, 4374. (h) Hotze, A. C. G.; Kariuki, B. M.; Hannon, M. J.
Angew. Chem., Int. Ed. 2006, 45, 4839. (i) Allen, K.; Faulkner, R.;
Harding, L.; Rice, C.; Riis-Johannessen, T.; Voss, M.; Whitehead, M.
Angew. Chem., Int. Ed. 2010, 49, 6655. (j) Jeffery, J.; Rice, C.; Harding,
L.; Baylies, C.; Riis-Johannessen, T. Chem.Eur. J. 2007, 13, 5256.
(3) (a) Pluth, M. D.; Bergman, R. G.; Raymond, K. N. Science 2007,
316, 85. (b) Mal, P.; Breiner, B.; Rissanen, K.; Nitschke, J. R. Science
2009, 324, 1697. (c) Kuil, M.; Soltner, T.; Van Leeuwen, P. W. N. M.;
Reek, J. N. H. J. Am. Chem. Soc. 2006, 128, 11344. (d) Sun, Q.; Iwasa,
J.; Ogawa, D.; Ishido, Y.; Sato, S.; Ozeki, T.; Sei, Y.; Yamaguchi, K.;
Fujita, M. Science 2010, 328, 1144. (e) Ito, H.; Ikeda, M.; Hasegawa,
T.; Furusho, Y.; Yashima, E. J. Am. Chem. Soc. 2011, 133, 3419.
(f) Yashima, E.; Maeda, K.; Furusho, Y. Acc. Chem. Res. 2008, 41, 1166.
(g) Meng, W.; Clegg, J. K.; Thoburn, J. D.; Nitschke, J. R. J. Am. Chem.
Soc. 2011, 133, 13652. (h) Ayme, J.-F.; Beves, J. E.; Leigh, D. A.;
McBurney, R. T.; Rissanen, K.; Schultz, D. Nat. Chem. 2012, 4, 15.
(4) (a) Argent, S. P.; Riis-Johannessen, T.; Jeffery, J. C.; Harding, L.
P.; Ward, M. D. Chem. Commun. 2005, 4647. (b) Ziegler, M.; Davis, A.
V.; Johnson, D. W.; Raymond, K. N. Angew. Chem., Int. Ed. 2003, 42,
6907
dx.doi.org/10.1021/ja212132r | J. Am. Chem. Soc. 2012, 134, 6904−6907