Published on Web 01/08/2003
Sequence Specific Fluorescence Detection of Double Strand
DNA
Victor C. Rucker, Shane Foister, Christian Melander, and Peter B. Dervan*
Contribution from the The DiVision of Chemistry and Chemical Engineering, California Institute
of Technology, Pasadena, California 91125
Abstract: Methods for the fluorescent detection of specific sequences of double strand DNA in homogeneous
solution may be useful in the field of human genetics. A series of hairpin polyamides with tetramethyl
rhodamine (TMR) attached to an internal pyrrole ring were synthesized, and the fluorescence properties of
the polyamide-fluorophore conjugates in the presence and absence of duplex DNA were examined. We
observe weak TMR fluorescence in the absence of DNA. Addition of g1:1 match DNA affords a significant
fluorescence increase over equimolar mismatch DNA for each polyamide-TMR conjugate. Polyamide-
fluorophore conjugates offer a new class of sensors for the detection of specific DNA sequences without
the need for denaturation. The polyamide-dye fluorescence-based method can be used to screen in parallel
the interactions between aromatic ring pairs and the minor groove of DNA even when the binding site
contains a non-Watson-Crick DNA base pair. A ranking of the specificity of three polyamide ring pairss
Py/Py, Im/Py, and Im/Imswas established for all 16 possible base pairs of A, T, G, and C in the minor
groove. We find that Im/Im is an energetically favorable ring pair for minor groove recognition of the T‚G
base pair.
Introduction
One example is the “molecular beacon” which consists of a
hairpin DNA labeled in the stem with a fluorophore and a
Interest in the detection of specific nucleic acid sequences in
homogeneous solution has increased due to major developments
in human genetics. Single nucleotide polymorphisms (SNPs)
are the most common form of variation in the human genome
and can be diagnostic of particular genetic predispositions
toward disease.1 Most methods of DNA detection involve
hybridization by an oligonucleotide probe to its complementary
single-strand nucleic acid target leading to signal generation.2-7
quencher.4 Binding to a complementary strand results in opening
of the hairpin and separation of the quencher and the fluoro-
phore. However, detection by hybridization requires DNA
denaturation conditions, and it remains a challenge to develop
sequence specific fluorescent probes for DNA in the double
strand form.8-10
Hairpin polyamides are a class of synthetic ligands that can
be programmed to recognize specific DNA sequences with
affinities and specificities comparable to DNA binding pro-
teins.11 The large number of DNA sequences which can be
targeted with hairpin polyamides suggests that polyamide-
fluorophore conjugates might be useful in fluorescence-based
detection of specific nucleic acid sequences. Within the context
of targeting sites in gigabase size DNA, Laemmli demonstrated
that polyamides with Texas Red or fluorescein at the C-terminus
specifically stain 5′-GAGAA-3′ repeats in Drosophila satellites,
as well as teleomeric repeats in insect and human chromosomes
* To whom correspondence should be addressed. Tel: (626) 395-6002.
(1) (a) Wang, D. G.; Fan, J.-B.; Siao, C.-J.; Berno, A.; Young, P.; Sapolsky,
R.; Ghandour, G.; Perkins, N.; Winchester, E.; Spencer, J.; Kruglyak, L.;
Stein, L.; Hsie, L.; Topaloglou, T.; Hubbell, E.; Robinson, E.; Mittmann,
M.; Morris, M. S.; Shen, N.; Kilburn, D.; Rioux, J.; Nusbaum, C.; Rozen,
S.; Hudson, T. J.; Lipshutz, R.; Chee, M.; Lander, E. S. Science 1998,
280, 1077-1082. (b) Hacia, J. G. Nature Genetics Suppl. 1999, 21, 42-
47. (c) Ihara, T.; Chikaura, Y.; Tanaka, S.; Jyo, A. Chem. Commun. 2002,
2152-2153. (d) Frutos, A. G.; Pal, S.; Quesada, M.; Lahiri, J. J. Am. Chem.
Soc. 2002, 124, 2396-2397. (e) Kukita, Y.; Higasa, K.; Baba, S.;
Nakamura, M.; Manago, S.; Suzuki, A.; Tahira, T.; Hayashi, K. Electro-
phoresis 2002, 23, 2259-2266. (f) Brazill, S. A.; Kuhr, W. G. Anal. Chem.
2002, 74, 3421-3428. (g) Yamashita, K.; Takagi, M.; Kondo, H., Takenaka,
S. Anal. Biochem. 2002, 306, 188-196.
(2) Whitcombe, D.; Theaker, J.; Guy, S. P.; Brown, T.; Little, S. Nat.
Biotechnol. 1999, 17, 804-807. (b) Thelwell, N. Millington, S.; Solinas,
A.; Booth, J. A.; Brown, T. Nucleic Acids Res. 2000, 28, 3752-3761.
(3) (a) Holland, P. M.; Abramson, R. D.; Watson, R.; Gelfand, D. H. Proc.
Natl. Acad. Sci. U.S.A. 1991, 88, 7276-7280. (b) Woo, T. H. S.; Patel, B.
K. C.; Smythe, L. D.; Norris, M. A.; Symonds, M. L.; Dohnt, M. F. Anal.
Biochem. 1998, 256, 132-134.
(7) Sando, S.; Kool, E. T. J. Am. Chem. Soc. 2001, 124, 2096-2097.
(8) For nonsequence specific fluorescent dyes, such as ethidium, thiazole orange
and oxozole yellow dimers, see: (a) Rye, H. S.; Yue, S.; Wemmer, D. E.;
Quesada, M. A.; Haughland, R. P.; Mathies, R. A.; Glazer, A. N. Nucleic
Acids Res. 1992, 20, 2803-2812. (b) Cosa, G.; Focsaneanu, K. S.; McLean,
J. R. N.; McNamee, J. P.; Scaiano, J. C. Photochem. Photobiol. 2001, 73,
585-599.
(4) (a) Tyagi, S.; Kramer, F. R. Nat. Biotechnol. 1996, 14, 303-308. (b) Tyagi,
S.; Bratu, D. P.; Kramer, F. R. Nat. Biotechnol. 1998, 16, 49-53. (c)
Kostrikis, L. G.; Tyagi, S.; Mhlanga, M. M.; Ho, D. D.; Kramer, F. R.
Science 1998, 279, 1228-1229.
(9) (a) Seifert, J. L.; Connor, R. E.; Kushon, S. A.; Wang, M.; Armitage, B.
A. J. Am. Chem. Soc. 1999, 121, 2987-2995. (b) Wang, M.; Silva, G. L.;
Armitage, B. A. J. Am. Chem. Soc. 2000, 122, 9977-9986.
(10) For distamycin-Hoechst hybrids, see: (a) Satz, A. L.; Bruice, T. C. Bioorg.
Med. Chem. 2000, 8 (8), 1871-1880. (b) Satz, A. L.; Bruice, T. C. J. Am.
Chem. Soc. 2001, 123 (11), 2469-2477. (c) Satz, A. L.; Bruice, T. C.
Bioorg. Med. Chem. 2002, 10, 241-252.
(5) (a) Jenkins, Y.; Barton, J. K. J. Am. Chem. Soc. 1992, 114, 8736-8738.
(b) Rajir, S. B.; Robles, J.; Wiederholt, K.; Kiumelis, R. G.; McLaughlin,
L. W. J. Org. Chem. 1997, 62, 523-529.
(6) Ranasinghe, R. T.; Brown, L. J.; Brown, T. Chem. Commun. 2001, 1480-
1481.
(11) Dervan, P. B. Bioorg. Med. Chem. 2001, 9, 2215-2235.
9
10.1021/ja021011q CCC: $25.00 © 2003 American Chemical Society
J. AM. CHEM. SOC. 2003, 125, 1195-1202
1195