Organometallics
Article
(2) For selected reviews on applications of alkylphosphines in Pd-
catalyzed C−C cross-couplings, see (a) Rossi, R.; Bellina, F.; Lessi,
M.; Manzini, C.; Marianetti, G.; Perego, L. A. Recent Applications of
Phosphane-based Palladium Catalysts in Suzuki-Miyaura. Reactions
Involved in Total Syntheses of Natural Products. Curr. Org. Chem.
2015, 19, 1302−1409. (b) Li, H.; Johansson Seechurn, C. C. C.;
Colacot, T. J. Development of Preformed Pd Catalysts for Cross-
Coupling Reactions, Beyond the 2010 Nobel Prize. ACS Catal. 2012,
2, 1147−1164. (c) Fu, G. C. The Development of Versatile Methods
for Palladium-Catalyzed Coupling Reactions of Aryl Electrophiles
through the Use of P(t-Bu)3 and PCy3 as Ligands. Acc. Chem. Res.
2008, 41, 1555−1564. (d) Fleckenstein, C. A.; Pleino, H. Sterically
demanding trialkylphosphines for palladium-catalyzed cross coupling
reactionsalternatives to PtBu3. Chem. Soc. Rev. 2010, 39, 694−711.
(3) See (a) Littke, A. F.; Fu, G. C. A Versatile Catalyst for Heck
Reactions of Aryl Chlorides and Aryl Bromides under Mild
Conditions. J. Am. Chem. Soc. 2001, 123, 6989−7000. (b) Littke, A.
F.; Schwarz, L.; Fu, G. C. Pd/P(t-Bu)3: A Mild and General Catalyst
for Stille Reactions of Aryl Chlorides and Aryl Bromides. J. Am. Chem.
Soc. 2002, 124, 6343−6348. (c) Littke, A. F.; Dai, C.; Fu, G. C.
Versatile Catalysts for the Suzuki Cross-Coupling of Arylboronic
Acids with Aryl and Vinyl Halides and Triflates under Mild
Conditions. J. Am. Chem. Soc. 2000, 122, 4020−4028. (d) Beller,
M.; Riermeier, T. H. Phosphapalladacycle Catalyzed Heck Reactions
for Efficient Synthesis of Trisubstituted Olefins: Evidence for
Palladium(0) Intermediates. Eur. J. Inorg. Chem. 1998, 1998, 29−
35. (e) van Strijdonck, G. P. F.; Boele, M. D. K.; Kamer, P. C. J.; de
Vries, J. G.; van Leeuwen, P. W. N. M. Fast Palladium Catalyzed
Arylation of Alkenes Using Bulky Monodentate Phosphorus Ligands.
Eur. J. Inorg. Chem. 1999, 1999, 1073−1076. (f) Hartwig, J. F.; Paul,
F. Oxidative Addition of Aryl Bromide after Dissociation of
Phosphine from a Two-Coordinate Palladium(0) Complex, Bis(tri-
o-tolylphosphine)Palladium(0). J. Am. Chem. Soc. 1995, 117, 5373−
5374.
Bimetallic Catalysis: The Importance of Anionic Ligands in Catalyst
Speciation. J. Am. Chem. Soc. 2016, 138, 3266−3269.
́
(8) del Pozo, J.; Carrasco, D.; Perez-Temprano, M. H., III; García-
Melchor, M.; Alvarez, R.; Casares, J. A.; Espinet, P. Stille Coupling
́
Involving Bulky Groups Feasible with Gold Cocatalyst. Angew. Chem.,
Int. Ed. 2013, 52, 2189−2193.
(9) Shi, Y.; Peterson, S. M.; Haberaecker, W. W., III; Blum, S. A.
Alkynes as Stille Reaction Pseudohalides: Gold- and Palladium-
Cocatalyzed Synthesis of Tri- and Tetra-Substituted Olefins. J. Am.
Chem. Soc. 2008, 130, 2168−2196.
(10) Ariafard, A.; Rajabi, N. A.; Atashgah, M. J.; Canty, A. J.; Yates,
B. F. Computational Study of Carbostannylation Implicating
Bimetallic Catalysis Involving “AuI-Vinyl-PdII” Species. ACS Catal.
2014, 4, 860−869.
(11) Khaledifard, Y.; Nsiri, B.; Javidy, S. A.; Sereshk, A. V.; Yates, B.
F.; Ariafard, A. Phosphine-Scavenging Role of Gold(I) Complexes
from Pd(PtBu3)2 in the Bimetallic Catalysis of Carbostannylation of
Alkynes. Organometallics 2017, 36, 2014−2019.
(12) Diversi, P.; Cuzzola, A.; Ghiotto, F. Chemistry of Polynuclear
Cationic Gold(I) Thiolates of Formula [Au2(StBu)(L2)][BF4]. Eur. J.
Inorg. Chem. 2009, 4, 545−553.
(13) A black powder, presumed to be Pd black, precipitated after
∼0.5 h.
(14) CCDC 1875862 (3) contains the supplementary crystallo-
graphic data. These data are available free of charge from the
data_request/cif.
(15) Stambuli, J. P.; Incarvito, C. D.; Buhl, M.; Hartwig, J. F.
Synthesis, Structure, Theoretical Studies, and Ligand Exchange
Reactions of Monomeric, T-Shaped Arylpalladium(II) Halide
Complexes with an Additional, Weak Agostic Interaction. J. Am.
Chem. Soc. 2004, 126, 1184−1194.
(16) For studies demonstrating the effects of free PPh3 on reducing
the efficiency of transmetalation in Pd-catalyzed Suzuki−Miyaura
cross-couplings, see Ho, C. C.; Olding, A.; Smith, J. A.; Bissember, A.
C. Nuances in Fundamental Suzuki-Miyaura Cross-Couplings
Employing [Pd(PPh3)4]: Poor Reactivity of Aryl Iodides at Lower
Temperatures. Organometallics 2018, 37, 1745−1750 and references
cited therein .
(17) For studies demonstrating the effects of free PPh3 on reducing
the efficiency of transmetalation in Pd-catalyzed Stille cross-couplings,
see (a) Farina, V.; Krishnan, B. Large rate accelerations in the stille
reaction with tri-2-furylphosphine and triphenylarsine as palladium
ligands: mechanistic and synthetic implications. J. Am. Chem. Soc.
1991, 113, 9585−9595 and references cited therein . (b) Liebeskind,
L. S.; Fengi, R. W. 3-Stannylcyclobutenediones as nucleophilic
cyclobutenedione equivalents. Synthesis of substituted cyclobutene-
diones and cyclobutenedione monoacetals and the beneficial effect of
catalytic copper iodide on the Stille reaction. J. Org. Chem. 1990, 55,
5359−5364. (c) Casado, A. L.; Espinet, P. Quantitative Evaluation of
the Factors Contributing to the “Copper Effect” in the Stille Reaction.
Organometallics 2003, 22, 1305−1309.
(18) For selected studies concerning the enhanced efficiency of Pd-
catalyzed Stille couplings employing copper cocatalysts, see refs 17b
and 17c and (a) Farina, V.; Kapadia, S.; Krishnan, B.; Wang, C.;
Liebeskind, L. S. On the Nature of the “Copper Effect” in the Stille
Cross-Coupling. J. Org. Chem. 1994, 59, 5905−5911. (b) Han, X.;
Stolz, B. M.; Corey, E. J. Cuprous Chloride Accelerated Stille
Reactions. A General and Effective Coupling System for Sterically
Congested Substrates and for Enantioselective Synthesis. J. Am. Chem.
Soc. 1999, 121, 7600−7605. (c) Mee, S. P. H.; Lee, V.; Baldwin, J. E.
Stille Coupling Made EasierThe Synergic Effect of Copper(I) Salts
and the Fluoride Ion. Angew. Chem., Int. Ed. 2004, 43, 1132−1136.
(d) Mee, S. P. H.; Lee, V.; Baldwin, J. E. Significant Enhancement of
the Stille Reaction with a New Combination of ReagentsCopper(I)
Iodide with Cesium Fluoride. Chem. - Eur. J. 2005, 11, 3294−3308.
(19) For selected studies concerning Pd-catalyzed Suzuki−Miyaura
couplings employing copper cocatalysts, see (a) Boland, G. M.;
Donnelly, D. M. X.; Finet, P.-J.; Rea, M. D. Synthesis of neoflavones
(4) For a study of the reductive elimination of aryl halides from P(t-
Bu)3-ligated Pd complexes, see Roy, A. H.; Hartwig, J. F. Reductive
Elimination of Aryl Halides from Palladium(II). J. Am. Chem. Soc.
2001, 123, 1232−1233.
(5) Generating the active catalyst in situ from various Pd(0) or
Pd(II) precatalysts and [HP(t-Bu)3]BF4 allows for easier handling
because free P(t-Bu)3 is susceptible to oxidation by oxygen (ref 2c).
[Pd{P(t-Bu)3}2] is an air-stable solid and can be handled in air (refs
2c and 3c).
(6) For selected reviews on homogeneous heterobimetallic catalysis
featuring palladium, see (a) Hirner, J. J.; Shi, Y.; Blum, S. A.
Organogold Reactivity with Palladium, Nickel, and Rhodium:
Transmetalation, Cross-Coupling, and Dual Catalysis. Acc. Chem.
́
Res. 2011, 44, 603−613. (b) Perez-Temprano, M. H.; Casares, J. A.;
Espinet, P. Bimetallic Catalysis using Transition and Group 11
Metals: An Emerging Tool for C-C Coupling and Other Reactions.
Chem. - Eur. J. 2012, 18, 1864−1884. (c) Powers, D. C.; Ritter, T.
Bimetallic Redox Synergy in Oxidative Palladium Catalysis. Acc. Chem.
Res. 2012, 45, 840−850. (d) Bay, K. L.; Yang, Y.-F.; Houk, K. N.
Multiple roles of silver salts in palladium-catalyzed C-H activations. J.
Organomet. Chem. 2018, 864, 19−25.
(7) For studies describing Au(I) transmetalating species in cross-
couplings, see (a) Shi, Y.; Ramgren, S. D.; Blum, S. A. Palladium-
Catalyzed Carboauration of Alkynes and Palladium/Gold Cross-
Coupling. Organometallics 2009, 28, 1275−1277. (b) Shi, Y.; Roth, K.
E.; Ramgren, S. D.; Blum, S. A. Catalyzed Catalysis Using Carbophilic
Lewis Acidic Gold and Lewis Basic Palladium: Synthesis of
Substituted Butenolides and Isocoumarins. J. Am. Chem. Soc. 2009,
131, 18022−18023. (c) Al-Amin, M.; Johnson, J. S.; Blum, S. A.
Selectivity, Compatibility, Downstream Functionalization, and Silver
Effect in the Gold and Palladium Dual-Catalytic Synthesis of
Lactones. Organometallics 2014, 33, 5448−5456. (d) Al-Amin, M.;
Roth, K. E.; Blum, S. A. Mechanistic Studies of Gold and Palladium
Cooperative Dual-Catalytic Cross-Coupling Systems. ACS Catal.
2014, 4, 622−629. (e) García-Domínguez, P.; Nevado, C. Au-Pd
E
Organometallics XXXX, XXX, XXX−XXX