Cooperative Catalysis by Amino-Thioureas
A R T I C L E S
Scheme 1. Thiourea-Catalyzed Enantioselective Cyanosilylation
activity relationship studies reveal a clear requirement for the
tertiary amine, but the respective roles of the thiourea and amine
have not been elucidated. Although thiourea activation of the
electrophile by hydrogen bonding is often invoked based largely
on spectroscopic data of detectable intermediates,15,16 the well-
established anion-binding properties of thioureas17 raise the
possibility that nucleophile binding and activation may be
involved instead. Indeed, a detailed theoretical study has shown
that the nucleophile-activation mechanism is energetically
accessible in some cases, raising questions about the viability
of electrophile-activation mechanisms in related reactions.18
Without a basic understanding of the catalytic mechanism, only
speculation about transition structures and the basis for enan-
tioselectivity is possible.
recently discovered ketone cyanosilylation19,20 promoted by
tertiary amino-thiourea catalyst 1a13c as a prototypical reaction
for mechanistic analysis (Scheme 1).21,22 The resulting experi-
mental and theoretical investigation described in this paper has
led to the elucidation of a cooperative mechanism, characteriza-
tion of likely transition structures with insight into the basis
for enantioselectivity, and the development of more enantiose-
lective and broadly applicable catalysts.
To obtain better insight into the nature and mechanism of
cooperative catalysis with thiourea catalysts, we selected the
(11) For reviews, see: (a) Takemoto, Y. Org. Biomol. Chem. 2005, 3, 4299-
4306. (b) Taylor, M. S.; Jacobsen, E. N. Angew. Chem., Int. Ed. 2006, 45,
1520-1543. (c) Connon, S. J. Chem. Eur. J. 2006, 12, 5418-5427.
(12) Primary amino-thioureas: (a) Lalonde, M. P.; Chen, Y.; Jacobsen, E. N.
Angew. Chem., Int. Ed. 2006, 45, 6366-6370 and refs cited therein.
Secondary amido-thioureas: (b) Yoon, T. P.; Jacobsen, E. N. Angew. Chem.,
Int. Ed. 2005, 44, 466-468. Sulfinamido thioureas: (c) Tan, K. L.;
Jacobsen, E. N. Angew. Chem., Int. Ed. 2007, 46, 1315-1317. Hydroxyl
thioureas: (d) Herrera, R. P.; Sgarzani, V.; Bernardi, L.; Ricci, A. Angew.
Chem., Int. Ed. 2005, 44, 6576-6579. Amino-hydroxyl thioureas: (e)
Yamaoka, Y.; Miyabe, H.; Takemoto, Y. J. Am. Chem. Soc. 2007, 129,
6686-6687. Guanidino thioureas: (f) Sohtome, Y.; Hashimoto, Y.;
Nagasawa, K. AdV. Synth. Catal. 2005, 347, 1643-1648.
(13) Tertiary amino-thiourea catalysts derived from chiral 1,2-diamines: (a)
Okino, T.; Hoashi, Y.; Takemoto, Y. J. Am. Chem. Soc. 2003, 125, 12672-
12673. (b) Okino, T.; Hoashi, Y.; Furukawa, T.; Xu, X. N.; Takemoto, Y.
J. Am. Chem. Soc. 2005, 127, 119-125. (c) Fuerst, D. E.; Jacobsen, E. N.
J. Am. Chem. Soc. 2005, 127, 8964-8965. (d) Hoashi, Y.; Okino, T.;
Takemoto, Y. Angew. Chem., Int. Ed. 2005, 44, 4032-4035. (e) Berkessel,
A.; Cleemann, F.; Mukherjee, S. Angew. Chem., Int. Ed. 2005, 44, 7466-
7469. (f) Li, H.; Zu, L. S.; Wang, J.; Wang, W. Tetrahedron Lett. 2006,
47, 3145-3148. (g) Xu, X.; Furukawa, T.; Okino, T.; Miyabe, H.;
Takemoto, Y. Chem. Eur. J. 2006, 12, 466-467. (h) Zu, L. S.; Xie, H. X.;
Li, H.; Wang, H.; Jiang, W.; Wang, W. AdV. Synth. Catal. 2007, 349, 1882-
1886.
Results and Discussion
A. Kinetic Analysis. We carried out a detailed kinetic
analysis of the ketone cyanation reaction to elucidate the basic
composition of the rate-limiting transition structure and identify
catalyst resting states.23 Kinetic studies were performed using
representative substrate 6b and catalyst 1a at synthetically
relevant concentrations using a combination of GC analysis and
in situ IR spectroscopy.24 HCN was generated in situ from
TMSCN and CF3CH2OH,25 and quantitative formation of HCN
(18) (a) Hamza, A.; Schubert, G.; Soo´s, T.; Pa´pai, I. J. Am. Chem. Soc. 2006,
128, 13151-13160. (b) Rokob, T. A.; Hamza, H. A.; Pa´pai, I. Org. Lett.
2007, 9, 4279-4282. See, also: (c) Zhu, Y.; Drueckhammer, D. G. J. Org.
Chem. 2005, 70, 7755-7760. (d) Kotke, M.; Schreiner, P. R. Synthesis
2007, 779-790.
(19) For other examples of asymmetric ketone cyanosilylation, see: (a)
Hamashima, Y.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2000, 122,
7412-7413. (b) Tian, S. K.; Deng, L. J. Am. Chem. Soc. 2001, 123, 6195-
6196. (c) Deng, H. B.; Isler, M. R.; Snapper, M. L. Hoyveda, A. H. Angew.
Chem., Int. Ed. 2002, 41, 1009-1012. (d) Ryu, D. H.; Corey, E. J. J. Am.
Chem. Soc. 2005, 127, 5384-5387. (e) Liu, X. H.; Qin, B.; Zhou, X.; He,
B.; Feng, X. M. J. Am. Chem. Soc. 2005, 127, 12224-12225. (f) Qin, B.;
Liu, X. H.; Shi, J.; Zheng, K.; Zhao, H. T.; Feng, X. M. J. Org. Chem.
2007, 72, 2374-2378 and refs cited therein.
(20) Reviews: (a) Gregory, R. J. H. Chem. ReV. 1999, 99, 3649-3682. (b)
Brunel, J.-M.; Holmes, I. P. Angew. Chem., Int. Ed. 2004, 43, 2752-2778.
(21) Discussions on the biological mechanism for cyanohydrin formation: (a)
Wajant, H.; Pfizenmaier, K. J. Biol. Chem. 1996, 271, 25830-25834. (b)
Dreveny, I.; Kratky, C.; Gruber, K. Protein Sci. 2002, 11, 292-300. (c)
Stranzl, G. R.; Gruber, K.; Steinkellner, G.; Zangger, K.; Schwab, H.;
Kratky, C. J. Biol. Chem. 2004, 279, 3699-3707. (d) Gruber, K.; Gartler,
G.; Krammer, B.; Schwab, H.; Kratky, C. J. Biol. Chem. 2004, 279, 20501-
20510.
(22) Mechanistic investigations of the addition of cyanide to carbonyls not
promoted by chiral catalysts: (a) Lapworth, A. J. Chem. Soc. 1903, 83,
995-1005. (b) Lapworth, A. J. Chem. Soc. 1904, 85, 1206-1214. (c)
Lapworth, A.; Helmuth, R.; Manske, F. J. Chem. Soc. 1928, 2533-2549.
(d) Lapworth, A.; Manske, R. H. F. J. Chem. Soc. 1930, 1976-1981. (e)
Svirbely, W. J.; Roth, J. F. J. Am. Chem. Soc. 1953, 75, 3106-3111. (f)
Svirbely, W. J.; Brock, F. H. J. Am. Chem. Soc. 1955, 77, 5789-5792. (g)
Ching, W. M.; Kallen, R. G. J. Am. Chem. Soc. 1978, 100, 6119-6124.
(h) Corcoran, R. C.; Ma, J. J. Am. Chem. Soc. 1992, 114, 4536-4542. (i)
Denmark, S. E.; Chung, W.-J. J. Org. Chem. 2006, 71, 4002-4005.
(23) Kinetic analyses of catalytic, asymmetric additions of cyanide to CdO or
CdN: (a) Takamura, M.; Hamashima, Y.; Usuda, H.; Kanai, M.; Shibasaki,
M. Angew. Chem., Int. Ed. 2000, 39, 1650-1652. (b) Belokon, Y. N.;
Green, B.; Ikonnikov, N. S.; Larichev, V. S.; Lokshin, B. V.; Moscalenko,
M. A.; North, M.; Orizu, C.; Peregudov, A. S.; Timofeeva, G. I. Eur. J.
Org. Chem. 2000, 2655-2661. (c) Josephsohn, N. S.; Kuntz, K. W.;
Snapper, M. L.; Hoveyda, A. H. J. Am. Chem. Soc. 2001, 123, 11594-
11599. (d) Belokon, Y. N.; Blacker, A. J.; Carta, P.; Clutterbuck, L. A.;
North, M. Tetrahedron 2004, 60, 10433-10477. (e) Yamagiwa, N.; Tian,
J.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2005, 127, 3413-
3422.
(14) Cinchona alkaloid-derived thioureas: (a) Vakulya, B.; Varga, S.; Csampai,
A.; Soo´s, T. Org. Lett. 2005, 7, 1967-1969. (b) McCooey, S. H.; Connon,
S. J. Angew. Chem., Int. Ed. 2005, 44, 6367-6370. (c) Ye, J. X.; Dixon,
D. J.; Hynes, P. S. Chem. Commun. 2005, 4481-4483. (d) Bernardi, L.;
Fini, F.; Herrera, R. P.; Ricci, A.; Sgarzani, V. Tetrahedron 2006, 62, 375-
380. (e) Marcelli, T.; van der Haas, R. N. S.; van Maarseveen, J. H.;
Hiemstra, H. Angew. Chem., Int. Ed. 2006, 45, 929-931. (f) Tillman, A.
L.; Ye, J. X.; Dixon, D. J. Chem. Commun. 2006, 1191-1193. (g) Mattson,
A. E.; Zuhl, A. M.; Reynolds, T. E.; Scheidt, K. A. J. Am. Chem. Soc.
2006, 128, 4932-4933. (h) Song, J.; Wang, Y.; Deng, L. J. Am. Chem.
Soc. 2006, 128, 6048-6049. (i) Wang, J.; Li, H.; Zu, L. S.; Jiang, W.;
Xie, H. X.; Duan, W. H.; Wang, W. J. Am. Chem. Soc. 2006, 128, 12652-
12653. (j) Bode, C. M.; Ting, A.; Schaus, S. E. Tetrahedron 2006, 62,
11499-11505. (k) Wang, B.; Wu, F.; Wang, Y.; Liu, X. J. Am. Chem.
Soc. 2007, 129, 768-769. (l) Zu, L.; Wang, J.; Li, H.; Hexin, X.; Jiang,
W.; Wang, W. J. Am. Chem. Soc. 2007, 129, 1036-1037. (m) Biddle, M.
M.; Lin, M.; Scheidt, K. A. J. Am. Chem. Soc. 2007, 129, 3830-3831. (n)
Wang, Y.; Li, H.; Wang, Q.-W.; Liu, Y.; Foxman, B. M.; Deng, L. J. Am.
Chem. Soc. 2007, 129, 6364-6365. (o) Amere, M.; Lasne, C. M.; Rouden,
J. Org. Lett. 2007, 9, 2621-2624. (p) Liu, T. Y.; Cui, H. L.; Chai, Q.;
Long, J.; Li, B. J.; Wu, Y.; Ding, L. S.; Chen, Y. C. Chem. Commun.
2007, 2228-2230. (q) Wang, J.; Zu, L. S.; Li, H.; Xie, H. X.; Wang, W.
Synthesis 2007, 2576-2580. (r) Dine´r, P.; Nielsen, M.; Bertelsen, S.; Niess,
B.; Jørgensen, K. A. Chem. Commun. 2007, 3646-3648. (s) Gu, C. L.;
Liu, L.; Sui, Y.; Zhao, J. L.; Wang, D.; Chen, Y. J. Tetrahedron: Asymmetry
2007, 18, 455-463.
(15) (a) Vachal, P.; Jacobsen, E. N. J. Am. Chem. Soc. 2002, 124, 10012-
10014. (b) Berkessel, A.; Cleemann, F.; Mukherjee, S; Mu¨ller, T. N.; Lex,
J. Angew. Chem., Int. Ed. 2005, 44, 807-811. (c) Inokuma, T.; Hoashi,
Y.; Takemoto, Y. J. Am. Chem. Soc. 2006, 128, 9413-9419.
(16) For studies of reactions using achiral thioureas consistent with carbonyl
activation, see: (a) Schreiner, P. R.; Wittkopp, A. Org. Lett. 2002, 4, 217-
220. (b) Schreiner, P. R. Chem. Soc. ReV. 2003, 32, 289-296. (c) Fu, A.
P.; Thiel, W. THEOCHEM 2006, 765, 45-72. (d) Kirsten, M.; Rehbein,
J.; Hiersemann, M.; Strassner, T. J. Org. Chem. 2007, 72, 4001-4011.
(17) For a review, see: (a) Schmidtchen, F. P.; Berger, M. Chem. ReV. 1997,
97, 1609-1646. See, also: (b) Antonisse, M. M. G.; Reinhoudt, D. N.
Chem. Commun. 1998, 443-448. (c) Jagessar, R. C.; Shang, M.; Scheidt,
W. R.; Burns, D. H. J. Am. Chem. Soc. 1998, 120, 11684-11692. (d)
Hisaki, I.; Sasaki, S.-I.; Hirose, K.; Tobe, Y. Eur. J. Org. Chem. 2007,
607-615.
9
J. AM. CHEM. SOC. VOL. 129, NO. 51, 2007 15873