Published on Web 11/15/2002
Intramolecular Cycloadditions of Cyclobutadiene with Olefins
John Limanto,†,§ John A. Tallarico,†,| James R. Porter,†, Kelli S. Khuong,‡
K. N. Houk,*,‡ and Marc L. Snapper*,†
Contribution from the Department of Chemistry, Merkert Chemistry Center, Boston College,
2609 Beacon Street, Chestnut Hill, Massachusetts 02467, and Department of Chemistry and
Biochemistry, The UniVersity of California, Los Angeles, California 90095-1569
Received March 1, 2002. Revised Manuscript Received September 3, 2002
Abstract: Intramolecular cycloadditions between cyclobutadiene and olefins can provide highly functionalized
cyclobutene-containing products. The outcome of the reaction depends on the nature of the tether connecting
the two reactive partners in the cycloaddition. Electronically unactivated olefins attached to cyclobutadiene
through a three-atom, heteroatom-containing tether yield successfully the desired cycloadducts, whereas
the corresponding substrates without a heteroatom linkage or with a longer tether are less prone to undergo
the intramolecular cycloaddition. Calculations were used to help uncover some of the factors that influence
the course of the cycloaddition. Successful intramolecular reactions usually require either electronic activation
of the dienophile, conformational restriction of the tether, or a slower oxidation protocol. In general, a facile
intermolecular dimerization of cyclobutadiene is the major process that competes with the intramolecular
cycloaddition.
Introduction
complex [C4H4Fe(CO)3] (2, R ) H), for example, has sufficient
stability to tolerate a wide range of transformations without
Cyclobutadiene (1, R ) H) is a highly reactive, antiaromatic
species1 that undergoes rapid and facile dimerization (1 f 3,
eq 1).2 Nevertheless, cyclobutadiene has been observed at low
temperatures (i.e., 8 K, noble gas matrix),3 inferred through
Rebek’s three-phase test,4 and isolated inside Cram’s hemicar-
cerand molecular container.5 The reactivity of cyclobutadiene
can be modulated, however, through coordination to a metal
center.6 The metalloaromatic7 tricarbonylcyclobutadiene iron
disrupting the cyclobutadiene functionality, including electro-
philic aromatic substitution reactions,8 deprotonation of the
cyclobutadiene ring hydrogen(s) followed by trapping with
electrophiles,9 and Pd(0)-catalyzed C-C and C-N bond form-
ing reactions.10 In general, the iron tricarbonyl complexes
survive acidic, basic, and reducing environments, as well as
some mild oxidizing conditions. Treatment of these complexes
with cerium ammonium nitrate (CAN), however, can oxidize
the iron and liberate free cyclobutadiene.11 To a lesser extent,
FeCl3 and Pb(OAc)4 have also been used for this purpose.11
When cyclobutadiene is generated in the presence of olefins
and dienes, an intermolecular cycloaddition can lead to a variety
of cyclobutene-containing adducts (eqs 2 and 3).11
* To whom correspondence should be addressed. E-mail: marc.
snapper@bc.edu and houk@chem.ucla.edu.
† Boston College.
‡ The University of California, Los Angeles.
§ Current address: Merck Research Laboratories, P.O. Box 2000, R80Y-
240, Rahway, NJ 07065-0900.
| Current address: Harvard Institute for Chemistry and Cell Biology,
Harvard Medical School, 25 Shattuck St., Boston, MA 02115.
Current address: Infinity Pharmaceuticals, 650 Albany St., Boston,
MA 02118.
(1) (a) Maier, G. Angew. Chem. 1974, 86, 491. (b) Deniz, A. A.; Peters, K. S.;
Snyder, G. J. Science 1999, 286, 1119. (c) Bally, T.; Masamune, S.
Tetrahedron 1980, 36, 343.
(2) Li, Y.; Houk, K. N. J. Am. Chem. Soc. 1996, 118, 880 and references
therein.
(3) (a) Chapman, O. L.; McIntosh, C. L.; Pacansky, J. J. Am. Chem. Soc. 1973,
95, 614. (b) Chapman, O. L.; De La Cruz, D.; Roth, R.; Pacansky, J. J.
Am. Chem. Soc. 1973, 95, 1337. (c) Krantz, A.; Lin, C. Y.; Newton, M. D.
J. Am. Chem. Soc. 1973, 95, 2744.
(4) (a) Rebek, J., Jr.; Gavina, F. J. Am. Chem. Soc. 1974, 96, 7112. (b) Rebek,
J., Jr.; Gavina, F. J. Am. Chem. Soc. 1975, 97, 3453.
(5) Cyclobutadiene was generated by irradiation of R-pyrone trapped inside
the hemicarcerand host. (a) Cram, D. J. Nature 1992, 356, 29. (b) Cram,
D. J.; Tanner, M. E.; Thomas, R. Angew. Chem., Int. Ed. Engl. 1991, 30,
1024.
We envisioned that an intramolecular reaction between
cyclobutadiene and olefins could offer substantial control over
(6) (a) Emerson, G. F.; Watts, L.; Pettit, R. J. Am. Chem. Soc. 1965, 87, 131.
(b) Rosenblum, M.; Gatsonis, C. J. Am. Chem. Soc. 1967, 89, 5074. (c)
Paquette, L. A.; Wise, L. D. J. Am. Chem. Soc. 1967, 89, 6659. (d) Grubbs,
R. H. J. Am. Chem. Soc. 1970, 92, 6993. (e) Grubbs, R. H.; Grey, R. A. J.
Chem. Soc., Chem. Commun. 1973, 76. (f) Pettit, R. J. Organomet. Chem.
1975, 100, 205. (g) Fitzpatrick, J. D.; Watts, L.; Emerson, G. F.; Pettit, R.
J. Am. Chem. Soc. 1965, 87, 3254.
(8) For reviews on cyclobutadienylmetal complexes, see: Efraty, A. Chem.
ReV. 1977, 77, 691 and references therein.
(9) Bunz, U. Organometallics 1993, 12, 3594 and references therein.
(10) For Stille type couplings, see: (a) Bunz, U. H. F.; Enkelmann, V. Angew.
Chem., Int. Ed. Engl. 1993, 32, 1653. (b) Wiegelmann, J. E. C.; Bunz, U.
H. F.; Schiel, P. Organometallics 1994, 13, 4649. For C-N bond forming
reactions, see: Wiegelmann-Kreiter, J. E. C.; Enkelmann, V.; Bunz, U. H.
F. Chem. Ber. 1995, 128, 1055.
(7) Bursten, B. E.; Fenske, R. F. Inorg. Chem. 1979, 18, 1760.
9
14748
J. AM. CHEM. SOC. 2002, 124, 14748-14758
10.1021/ja0203162 CCC: $22.00 © 2002 American Chemical Society