ORGANIC
LETTERS
2002
Vol. 4, No. 26
4575-4578
New and Efficient Synthesis of
Azabicyclo[4.4.0]alkane Amino Acids by
Rh-Catalyzed Cyclohydrocarbonylation
Nobuhiro Mizutani,† Wen-Hua Chiou, and Iwao Ojima*
Department of Chemistry, State UniVersity of New York at Stony Brook,
Stony Brook, New York 11794-3400
Received August 24, 2002
ABSTRACT
Highly efficient syntheses of azabicyclo[4.4.0]alkane amino acids were achieved by Rh-catalyzed cyclohydrocarbonylation of dipeptides bearing
a terminal olefin moiety and a heteroatom nucleophile.
Recently, the importance of azabicyclo[X.Y.0]alkane amino
acids as conformationally restricted dipeptide surrogates has
been recognized among medicinal and peptide chemists in
the design of peptides and peptidomimetics for enzyme
inhibitors and receptor antagonists or agonists.1-9
Azabicyclo[X.Y.0]alkane amino acids also serve as peptide
â-turn mimetics for controlling peptide secondary struc-
tures.10,11 These scaffolds can also serve as excellent units
for making combinatorial libraries. Accordingly, efficient and
versatile methods for the syntheses of this class of com-
pounds are currently in strong demand. Various approaches
have been studied to develop relevant synthetic methods
toward this goal.1-3 However, to the best of our knowledge,
no synthetic route has been developed based on a catalytic
cyclization process.
We describe here the first and efficient catalytic method
for the syntheses of enantiomerically pure azabicyclo[4.4.0]-
alkane amino acids using highly regioselective cyclohydro-
carbonylation catalyzed by a Rh-diphosphite complex.
We have reported12 that the cyclohydrocarbonylation of
N-acylallylglycinate catalyzed by Rh-BIPHEPHOS proceeds
via extremely regioselective hydroformylation, followed by
cyclization to form the corresponding hemiamidal. This
hemiamidal readily generates N-acyliminium ion, which may
accept the addition of an alcohol (in alcohol solvent) or
isomerize to N-acylenamine (in aprotic solvent).11 Accord-
ingly, if a nucleophile is located within the substrate, a second
cyclization should occur via the N-acyliminium intermediate
as shown in Scheme 1.13
† Present address: Tokyo Research Laboratory, Yuki Gosei Kogyo Co.
Ltd., 3-37-1 Sakashita, Itabashi, Tokyo 174-0043, Japan.
(1) Polyak, F.; Lubell, W. D. J. Org. Chem. 1998, 63, 5937-5949.
(2) Lombart, H.-G.; Lubell, W. D. J. Org. Chem. 1994, 59, 6147-6149.
(3) Lombart, H.-G.; Lubell, W. D. J. Org. Chem. 1996, 61, 9437-9446.
(4) Gosselin, F.; Lubell, W. D. J. Org. Chem. 2000, 65, 2163-2171.
(5) Siddiqui, M. A.; Pre´ville, P.; Tarazi, M.; Warder, S. E.; Eby, P.;
Gorseth, E.; Puumala, K.; DiMaio, J. Tetrahedron Lett. 1997, 38, 8807-
8810.
(6) Kim, H.-O.; Kahn, M. Tetrahedron Lett. 1997, 38, 6483-6484.
(7) Robl, J. A.; Sun, C.-Q.; Srevenson, J.; Ryono, D. E.; Simpkins, L.
M.; Cimarusti, M. P.; Dejneka, T.; Slusarchyk, W. A.; Chao, S.; Stratton,
L.; Misra, R. N.; Bednarz, M. S.; Asaad, M. M.; Cheung, H. S.; Abboa-
Offei, B. E.; Smith, P. L.; Mathers, P. D.; Fox, M.; Schaeffer, T. R.;
Seymour, A. A.; Trippodo, N. C. J. Med. Chem. 1997, 40, 1570-1577.
(8) Tran, T.-A.; Mattern, R.-H.; Goodman, M. Bioorg. Med. Chem. Lett.
1997, 7, 997-1002.
(11) Colombo, L.; Giacomo, M. D.; Brusotti, G.; Sardone, N.; Angiolini,
M.; Belvisi, L.; Maffioli, S.; Manzoni, L.; Scolastico, C. Tetrahedron 1998,
54, 5325-5336.
(12) Ojima, I.; Tzamarioudaki, M.; Eguchi, M. J. Org. Chem. 1995, 60,
7078-7079.
(9) Baures, P. W.; Ojala, W. H.; Costain, W. J.; Ott, M. C.; Pradhan,
A.; Gleason, W. B.; Mishra, R. K.; Johnson, R. L. J. Med. Chem. 1997,
40, 3594-3600.
(10) Kim, H.-O.; Lee, M. S. Tetrahedron Lett. 1997, 38, 4935-4938.
10.1021/ol026782d CCC: $22.00 © 2002 American Chemical Society
Published on Web 12/02/2002