A R T I C L E S
Perry et al.
centers that are electron-rich relative to the corresponding
phosphine complexes.18 Consequently, the carbene complexes
tend to be highly active in oxidative addition reactions, but that
activity can be tempered by sterically shielding the metal with
umbrella-like aromatic substituents. For these reasons, com-
plexes of electron-rich carbenes are proving to be robust and
active catalysts for several different reactions19-28 especially
in alkene metathesis.29
Chiral modification of electron-rich carbene ligands is a
logical progression in the field. Chiral, optically active, imid-
azolinylidines (alternatively called dihydroimidazolylidines)
were first reported several decades ago3 and several others have
been reported more recently.30-32 Chiral, unsaturated analogues
of the imidazolinylidine ligands, that is, chiral imidazolylidines,
have also been reported. Most of these are monodentate systems
with chiral N-substituents,33-35 or metalated derivatives36 that
might be expected to behave as a monodentate carbene complex
in many catalytic reactions. A binaphthyl system37 and the
oxazoline-containing chelate38 are the only robust, chiral,
bidentate, unsaturated carbene complex types reported to date.
Figure 1. The concept of “reactions of libraries with libraries” applied to
the carbene-oxazoline ligands 1.
Our primary interest in catalysis is to demonstrate high-
throughput methods can be used to accelerate catalyst discovery
and optimization.41-45 We believe that the slow step in such
approaches is preparation of the catalyst library, rather than
screening, so any advance that enables faster production of
ligands with good molecular architectures for asymmetric
catalysis is significant. Consequently, our thoughts settled on
the new ligand design 1 (Figure 1). These are constrained,
bidentate systems that seemed suitable for asymmetric catalysis.
Moreover, they could be accessible via the imidazolium salts 2
obtained from the oxazoline electrophiles 3 and the imidazoles
4; a relatively large library of ligand precursors 2 therefore could
be generated from two very small libraries of synthetic
constituents. This is a case in which reactions of libraries with
libraries46-49 could allow the production of a much bigger
collection of compounds. For instance, if 20 imidazoles 4 were
reacted with 5 oxazolines 3, then 100 different ligand precursors
could be prepared. Practically, that approach would be facilitated
by the characteristics of the products 2; these salts might be
purified simply by precipitation from apolar solvents, and, unlike
phosphines, the imidazolium salts 2 are easily handled, robust,
air-stable materials.
Asymmetric hydrogenations of alkenes that possess little or
no coordinating functionality were identified as a worthy test
application of the target ligand set. Substrate types suitable for
asymmetric hydrogenations include trisubstituted and tetra-
substituted alkenes (Figure 2). If these substrates have large
trans-orientated substituents, then desirable types of asymmetric
catalyst topographies are easier to envisage (ligands that fill
diagonally situated quadrants of space, e.g., C2-symmetric
ligands). However, there simply are not many homogeneous
Despite these efforts to prepare optically active, electron-
rich carbene complexes, there have been very few successful
applications of these complexes in asymmetric catalysis. Before
the work described here was submitted for communication,39
the only asymmetric catalysis featuring N-heterocyclic carbene
ligands involved an unspecified Heck reaction that gave
enantiomeric excesses (ee’s) of no more than 8%,33 and
hydrosilylation of an arylmethyl ketone with enantiomer ex-
cesses of 32% or less.34 Since then, such ligands have been
applied in an intramolecular cyclization reaction giving a product
of 76% ee,31 and in symmetry-breaking metathesis reactions
that give excellent ee’s in a limited number of reactions.32,40
(18) Huang, J.; Stevens, E. D.; Nolan, S. P.; Petersen, J. L. J. Am. Chem. Soc.
1999, 121, 2674-2678.
(19) Huang, J.; Nolan, S. P. J. Am. Chem. Soc. 1999, 121, 9889-9890.
(20) Huang, J.; Grasa, G.; Nolan, S. P. Org. Lett. 1999, 1, 1307-1309.
(21) Baratta, W.; Herrmann, W. A.; Rigo, P.; Schwarz, J. J. Organomet. Chem.
2000, 593-4, 489-493.
(22) Bo¨hm, V. P. W.; Weskamp, T.; Gsto¨ttmayr, C. W. K.; Hermann, W. A.
Angew. Chem., Int. Ed. 2000, 39, 1602-1604.
(23) Xu, L.; Chen, W.; Xiao, J. Organometallics 2000, 19, 1123-1127.
(24) Baratta, W.; Herrmann, W. A.; Kratzer, R. M.; Rigo, P. Organometallics
2000, 19, 3664-3669.
(25) Bo¨hm, V. P. W.; Gsto¨ttmayr, C. W. K.; Weskamp, T.; Herrmann, W. A.
J. Organomet. Chem. 2000, 595, 186-190.
(26) Weskamp, T.; Bo¨hm, V. P. W.; Herrmann, W. A. J. Organomet. Chem.
1999, 585, 348-352.
(27) Herrmann, W. A.; Reisinger, C.-P.; Spiegler, M. J. Organomet. Chem. 1998,
557, 93-96.
(28) Chen, C. A.; Ren, L.; Decken, A.; Crudden, C. M. Organometallics 2000,
19, 3459-3461.
(29) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18-29.
(30) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1, 953-
956.
(31) Lee, S.; Hartwig, J. F. J. Org. Chem. 2001, 66, 3402-3415.
(32) Van Veldhuizen, J. J.; Garber, S. B.; Kingsbury, J. S.; Hoveyda, A. H. J.
Am. Chem Soc. 2002, 124, 4954-4955.
(33) Enders, D.; Gielen, H.; Raabe, G.; Runsink, J.; Teles, J. H. Chem. Ber.
1996, 129, 1483-1488.
(41) Burgess, K.; Lim, H.-J.; Porte, A. M.; Sulikowski, G. A. Angew. Chem.,
Int. Ed. Engl. 1996, 35, 220-222.
(34) Herrmann, W. A.; Goossen, L. J.; Kocher, C.; Artus, G. R. J. Angew. Chem.,
Int. Ed. Engl. 1996, 35, 2805-2807.
(42) Burgess, K.; Moye-Sherman, D.; Porte, A. M. In Molecular DiVersity and
Combinatorial Chemistry; Chaiken, I. M., Janda, K. D., Eds.; American
Chemical Society: Washington, DC, 1996; pp 128-136.
(43) Burgess, K.; Porte, A. M. In AdVances in Catalytic Processes; Doyle, M.
P., Ed.; JAI Press: Greenwich, CT, 1997; Vol. 2, pp 69-82.
(44) Porte, A. M.; Reibenspies, J.; Burgess, K. J. Am. Chem. Soc. 1998, 120,
9180-9187.
(35) Herrmann, W. A.; Goossen, L. J.; Artus, G. R. J.; Kocher, C. Organo-
metallics 1997, 16, 2472-2477.
(36) Enders, D.; Gielen, H.; Raabe, G.; Runsink, J.; Teles, J. H. Chem. Ber.
1997, 130, 1253-1260.
(37) Clyne, D. S.; Jin, J.; Genest, E.; Galluci, J. C.; RajanBabu, T. V. Org.
Lett. 2000, 2, 1125-1128.
(45) Burgess, K.; Porte, A. M. Tetrahedron: Asymmetry 1998, 9, 2465-2469.
(46) Nielsen, J.; Jensen, F. R. Tetrahedron Lett. 1997, 38, 2011-2014.
(47) Baldino, C. M.; Casebier, D. S.; Caserta, J.; Slobodkin, G.; Tu, C.; Coffen,
D. L. Synlett 1997, 488-490.
(38) Herrmann, W. A.; Goossen, L. J.; Spiegler, M. Organometallics 1998, 17,
2162-2168.
(39) Powell, M. T.; Hou, D.-R.; Perry, M. C.; Cui, X.; Burgess, K. J. Am. Chem.
Soc. 2001, 123, 8878-8879.
(48) Neustadt, B. R.; Smith, E. M.; Nechuta, T.; Zhang, Y. Tetrahedron Lett.
1998, 39, 5317-5320.
(40) Seiders, T. J.; Ward, D. W.; Grubbs, R. H. Org. Lett. 2001, 3, 3225-
3228.
(49) Boger, D. L.; Chai, W.; Jin, Q. J. Am. Chem. Soc. 1998, 120, 7220-7225.
9
114 J. AM. CHEM. SOC. VOL. 125, NO. 1, 2003