A2A Adenosine Receptor Antagonists
Journal of Medicinal Chemistry, 2005, Vol. 48, No. 22 6895
Hiner, R. N.; Feeney, S. W.; Blake, P. R., Rzeszotarski, W. J.;
Hicks, R. P.; Costello, D. G.; Abreu, M. E. 1,3,8-Trisubstituted
Xanthines. Effects of Substitution Pattern upon Adenosine
Receptor A1/A2 Affinity. J. Med. Chem. 1991, 34, 1431-1435.
(11) Baraldi, P. G.; Borea, P. A.; Bergonzoni, M.; Cacciari, B.; Ongini,
E.; Recanatini, M.; Spalluto, G. Comparative Molecular Field
Analysis (CoMFA) of a Series of Selective Adenosine Receptor
A2A Antagonists. Drug Dev. Res. 1999, 46, 126-133.
(12) Thompson, R. D.; Secunda, S.; Daly, J. W.; Olsson, R. A. N6,9-
Disubstituted Adenines: Potent, Selective Antagonists at the
A1 Adenosine Receptor. J. Med. Chem. 1991, 34, 2877-2882.
(13) Calenbergh, S. V.; Verlinde, C. L. M. J.; Soenens, J.; De Bruyn,
A.; Callens, M.; Blaton, N. M.; Peeters, O. M.; Rozenski, J.; Hol,
W. G. J.; Herdewijn, P. Synthesis and Structure-Activity
Relationships of Analogues of 2′-Deoxy-2′-(3-methoxybenzami-
do)adenosine, a Selective Inhibitor of Trypanosomal Glycosomal
Glyceraldehyde-3-phosphate Dehydrogenase. J. Med. Chem.
1995, 38, 3838-3849.
(14) De Lucca, G. V.; Kim, U. T.; Liang, J.; Cordova, B.; Klabe, R.
M.; Garber, S.; Bacheler, L. T.; Lam, G. N.; Wright, M. R.; Logue,
K. A.; Erickson-Viitanen, S.; Ko, S. S.; Trainor, G. L.; Nonsym-
metric P2/P2′ Cyclic Urea HIV Protease Inhibitors. Structure-
Activity Relationship, Bioavailability, and Resistance Profile of
Monoindazole-Substituted P2 Analogues. J. Med. Chem. 1998,
41, 2411-2423.
(15) Boger, D. L.; Honda, T.; Dang, Q. Total Synthesis of Bleomycin
A2 and Related Agents. 2. Synthesis of (-)-Pyrimidoblamic Acid,
epi-(+)-Pyrimidoblamic Acid, (+)-Desacetamidopyrimidoblamic
Acid, and (-)-Descarboxamidopyrimidoblamic Acid. J. Am.
Chem. Soc. 1994, 116, 5619-5630.
(16) Hirota, K.; Kitade, Y.; Kanbe Y.; Maki, Y. Convenient Method
for the Synthesis of C-Alkylated Purine Nucleosides: Pal-
ladium-Catalyzed Cross-Coupling Reaction of Halogenopurine
Nucleosides with Trialkylaluminums. J. Org. Chem. 1992, 57,
5268-5270.
(17) (a) Van Aerschot, A. A.; Mamos, P.; Weyns, N. J.; Ikeda, S.; De
Clercq, E., Herdewijn, P. A. Antiviral Activity of C-Alkylated
Purine Nucleosides Obtained by Cross-Coupling with Tetraalky-
ltin Reagents. J. Med. Chem. 1993, 36, 2938-2942; (b) Labadie,
J. W.; Stille, J. K. Mechanisms of the Palladium-Catalyzed
Couplings of Acid Chlorides with Organotin Reagents. J. Am.
Chem. Soc. 1983, 105, 6129-6137.
Supporting Information Available: Spectroscopic data
of compounds 8, 9, 10a, 15c,e,f, 17, 18, 22a,c,e,f, 23a,c,e,f,
30a,b, 37, 39a,b, 40. Spectroscopic data and elemental analy-
sis of compounds 11, 25a,c,e,f, 32, 41. Elemental analysis of
compounds 25b,d. This material is available free of charge via
References
(1) (a) Poulsen, S. A.; Quinn, R. J. Adenosine Receptors: New
Opportunities for Future Drugs. Bioorg. Med. Chem. 1998, 6,
619-641; (b) Ongini, E.; Fredholm, B. B. Pharmacology of
Adenosine A2A Receptors. Trends Pharmacol. Sci. 1996, 17,
364-372; (c) Furlong, T. J.; Pierce, K. D.; Selbie, L. A.; Shine,
J. Molecular Characterization of a Human Brain Adenosine A2
Receptor. Mol. Brain Res. 1992, 15, 62-66; (d) Collis, M. G.
Evidence for an A1-Adenosine Receptor in the Guinea-Pig
Atrium. Br. J. Pharmacol. 1983, 78, 207-212.
(2) Fredholm, B. B.; Abbracchio, M. P.; Burnstock, G.; Daly, J. W.;
Kendall Harden, T.; Jacobson, K. A.; Leff, P.; Williams, M. VI
Nomenclature and Classification of Purinoceptors. Pharmacol.
Rev. 1994, 46, 143-156.
(3) Kim, D. S.; Palmiter, R. D. Adenosine Receptor Blockade
Reverses Hypophagia and Enhances Locomotor Activity of
Dopamine-Deficient Mice. Proc. Natl. Acad. Sci. U.S.A. 2003,
100, 1346-1351.
(4) (a) Baraldi, P. G.; Cacciari, B.; Spalluto, G.; Borioni, A.; Viziano,
M., Dionisotti, S.; Ongini, E. Current Developments of A2A
Adenosine Receptor Antagonists. Curr. Med. Chem. 1995, 2,
702-722; (b) Mueller, C. E.; Stein, B. Adenosine Receptor
Antagonists: Structures and Potential Therapeutic Applications.
Curr. Pharm. Des. 1996, 2, 501-530.
(5) (a) Shimada, J.; Koike, N.; Nonaka, H.; Shiozaki, S.; Yanagawa,
K.; Kanda, T.; Kobayashi, H.; Ichimura, M.; Nakamura, J.; Kase,
H.; Suzuki, F. Adenosine A2A Antagonists with Potent Anti-
Cataleptic Activity. Bioorg. Med. Chem. Lett. 1997, 7, 2349-
2352; (b) Shiozaki, S.; Ichikawa, S.; Nakamura, J.; Kitamura,
S.; Yamada, K.; Kuwana, Y. Actions of Adenosine A2A Receptor
Antagonist KW 6002 on Drug-Induced Catalepsy and Hypoki-
nesia Caused by Reserpine or MPTP. Phychopharmacology 1999,
147, 90-95.
(6) (a) Baraldi, P. G.; Manfredini, S.; Simoni, D.; Zappaterra, L.;
Zocchi, C.; Dionisotti, S.; Ongini, E. Synthesis of New Pyrazolo-
[4,3-e]1,2,4-triazolo[1,5-c]pyrimidine and 1,2,3-triazolo[4,5-e]1,2,4-
triazolo[1,5-c]pyrimidine Displaying Potent and Selective Ac-
tivity as A2A Adenosine Receptor Antagonists. Bioorg. Med.
Chem. Lett. 1994, 4, 2539-2544; (b) Zocchi, C.; Ongini, E.; Conti,
A.; Monopoli, A.; Negretti, A.; Baraldi, P. G.; Dionisotti, S. The
Non-Xanthine Heterocyclic Compound SCH 58261 is a New
Potent and Selective A2A Adenosine Receptor Antagonist. J.
Pharmacol. Exp. Ther. 1996, 276, 398-404; (c) Ongini, E. SCH
58261: a Selective A2A Adenosine Receptor Antagonist. Drug.
Dev. Res. 1997, 42, 63-70; (d) Baraldi, P. G.; Fruttarolo, F.;
Tabrizi, M. A.; Preti, D.; Romagnoli, R.; El-Kashef, H.; Moorman,
A.; Varani, K.; Gessi, S.; Merighi, S.; Borea, P. A. Design,
Synthesis, and Biological Evaluation of C9- and C2-Substituted
Pyrazolo[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidines as New A2A and
A3 Adenosine Receptors Antagonists. J. Med. Chem. 2003, 46,
1229-1241.
(7) (a) Caulkett, P. W. R.; Jones, G.; McPartlin, M.; Renshaw, N.
D.; Stewart, S. K.; Wright, B. Adenine Isosteres with Bridgehead
Nitrogen. Part 1. Two Independent Synthesis of the [1,2,4]-
triazolo[1,5-a][1,3,5]triazine Ring System Leading to a Range
of Substituents in the 2, 5 and 7 Positions. J. Chem. Soc., Perkin
Trans. 1 1995, 7, 801-808; (b) Poucher, S. M.; Keddie, J. R.;
Singh, P.; Stoggall, S. M.; Caulkett, P. W. R.; Jones, G.; Collis,
M. G. The in vitro pharmacology of ZM 241385, a Potent, Non-
Xanthine, A2A Selective Adenosine Receptor Antagonist. Br. J.
Pharmacol. 1995, 115, 1096-1102.
(8) Francis, J. E.; Cash, W. D.; Psychoyos, S.; Ghai, G.; Wenk, P.;
Friedmann, R. C.; Atkins, C.; Warren, V.; Furness, P.; Hyun, J.
L., Stone, G. A.; Desai, M.; Williams, M. Structure-Activity
Profile of a Series of Novel Triazoloquinazoline Adenosine
Antagonists. J. Med. Chem. 1988, 31, 1014-1020.
(9) (a) Harada, H.; Asano, O.; Hoshino, Y.; Yoshikawa, S.; Mat-
sukura., M.; Kabasawa, Y.; Niijima, J.; Kotake, Y.; Watanabe,
N.; Kawata, T.; Inoue, T.; Horizoe, T.; Yasuda, N.; Minami, H.
Nagata, K.; Murakami, M.; Nagaoka, J.; Kobayashi, S.; Tanaka,
I.; Abe, S. 2-Alkynyl-8-aryl-9-methyladenines as Novel Adenos-
ine Receptor Antagonists: Their Synthesis and Structure-
Activity Relathionships toward Hepatic Glucose Production
Induced via Agonism of the A2B Receptor. J. Med. Chem. 2001,
44, 170-179; (b) Cristalli, G. A2A Adenosine Receptor Antago-
nists. PCT Patent WO03051882, 2003.
(18) Cristalli, G.; Eleuteri, A.; Volpini, R.; Vittori, S.; Camaioni E.;
Lupidi, G.; Adenosine Deaminase Inhibitors: Synthesis and
Structure-Activity Relationships of 2-Hydroxy-3-nonyl Deriva-
tives of Azoles. J. Med. Chem. 1994, 37, 201-205.
(19) 1H NMR spectrum of 2-triazolyl derivatives 23b exhibited one
singlet at 7.94 ppm characteristic of symmetric compounds,
whereas 1-triazolyl derivatives 24b gave two doublets (J ) 0.8
Hz) at 7.81 and 8.24 ppm.
(20) (a) Reich, M. F.; Fabio, P. F.; Lee, V. J.; Kuck, N. A.; Testa, R.
T. Pyrido[3,4-e]-1,2,4-triazines and Related Heterocycles as
Potential Antifungal Agents. J. Med. Chem. 1989, 32, 2474-
2485; (b) Katner, A. S.; Brown, R. F. A Novel Preparation of
Thiazolo[5,4-c]pyridines and the Synthesis of Some Imidazo[4,5-
c]pyridines and Oxazolo[4,5-c]pyridines. J. Heterocycl. Chem.
1990, 27, 563-566.
(21) Houston, D. M.; Dolence, E. K.; Keller, B. T.; Patel-Thombre,
U.; Borchardt, R. T. Potential Inhibitors of S-Adenosylmethion-
ine-Dependent Methyltransferases. 8. Molecular Dissections of
Carbocyclic 3-Deazaadenosine as Inhibitors of S-Adenosylho-
mocysteine Hydrolase. J. Med. Chem. 1985, 28, 467-471.
(22) Chorvat, R. J.; Bakthavatchalam, R.; Beck, J. P.; Gilligan, P.
J.; Wilde, R. G.; Cocuzza, A. J.; Hobbs, F. W.; Cheeseman, R. S.;
Curry, M.; Rescinito, J. P.; Krenitsky, P.; Chidester, D.; Yarem,
J. A.; Klaczkiewicz, J. D.; Hodge, C. N.; Aldrich, P. E.; Wasser-
man, Z. R.; Fernandez, C. H.; Zaczek, R.; Fitzgerald, L. W.;
Huang, S. M.; Shen, H. L.; Wong, Y. N.; Chien, B. M.; Quon, C.
Y.; Arvanitis, A. Synthesis, Corticotropin-Releasing Factor
Receptor Binding Affinity, and Pharmacokinetic Properties of
Triazolo-, Imidazo-, and Pyrrolopyrimidines and -pyridines. J.
Med. Chem. 1999, 42, 833-848.
(23) Oguchi, M.; Wada, K.; Honma, H.; Tanaka, A.; Kaneko, T.;
Sakakibara, S.; Ohsumi, J.; Serizawa, N.; Fujiwara, T.; Hori-
koshi H.; Fujita, T. Molecular Design, Synthesis, and Hypogly-
cemic Activity of a Series of Thiazolidine-2,4-diones. J. Med.
Chem. 2000, 43, 3052-3066.
(24) (a) Durcan, M. J.; Morgan, P. F. Evidence for Adenosine A2
Receptor Involvement in the Hypomobility Effects of Adenosine
Analogs in Mice. Eur. J. Pharmacol. 1989, 168, 285-290; (b)
Popoli, P.; Reggio, R.; Pezzola, A.; Fuxe, K.; Ferre, S. Adenosine
A1 and A2A Receptor Antagonists Stimulate Motor Activity:
Evidence for an Increased Effectiveness in Aged Rats. Neurosci.
Lett. 1998, 251, 201-204; (c) El Yacoubi, M.; Ledent, C.;
Parmentier, M.; Costentin, J.; Vaugeois, J.-M. SCH 58261 and
ZM 241385 Differentially Prevent the Motor Effects of CGS
21680 in Mice: Evidence for a Functional ‘Atypical’ Adenosine
A2A Receptor. Eur. J. Pharmacol. 2000, 401, 63-77.
(10) (a) Lee, K. S.; Reddington, M. 1,3-Dipropyl-8-cyclopentylxanthine
(DPCPX) Inhibition of [3H]N-Ethylcarboxamidoadenosine (NECA)
Binding Allows the Visualization of Putative non-A1 Adenosine
Receptors. Brain Res. 1986, 368, 394-398; (b) Erickson, R. H.;